A logical framework combining model and proof theory

Mathematical logic and computer science have driven the design of a growing number of logics and related formalisms such as set theories and type theories. In response to this population explosion, logical frameworks have been developed as formal meta-languages in which to represent, structure, relate and reason about logics. Research on logical frameworks has diverged into separate communities, often with conflicting backgrounds and philosophies. In particular, two of the most important logical frameworks are the framework of institutions, from the area of model theory based on category theory, and the Edinburgh Logical Framework LF, from the area of proof theory based on dependent type theory. Even though their ultimate motivations overlap – for example in applications to software verification – they have fundamentally different perspectives on logic. In the current paper, we design a logical framework that integrates the frameworks of institutions and LF in a way that combines their complementary advantages while retaining the elegance of each of them. In particular, our framework takes a balanced approach between model theory and proof theory, and permits the representation of logics in a way that comprises all major ingredients of a logic: syntax, models, satisfaction, judgments and proofs. This provides a theoretical basis for the systematic study of logics in a comprehensive logical framework. Our framework has been applied to obtain a large library of structured and machine-verified encodings of logics and logic translations.

[1]  F. William Lawvere,et al.  Adjointness in Foundations , 1969 .

[2]  Frank Pfenning,et al.  A linear logical framework , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[3]  Lawrence C. Paulson,et al.  LEO-II - A Cooperative Automatic Theorem Prover for Classical Higher-Order Logic (System Description) , 2008, IJCAR.

[4]  Frank Pfenning,et al.  System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.

[5]  Valeria de Paiva,et al.  An Institutional View on Categorical Logic , 2007, Int. J. Softw. Informatics.

[6]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[7]  P. Martin-Löf On the meanings of the logical constants and the justi cations of the logical laws , 1996 .

[8]  N. G. de Bruijn,et al.  A plea for weaker frameworks , 1991 .

[9]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[10]  Thierry Coquand,et al.  Intuitionistic model constructions and normalization proofs , 1997, Mathematical Structures in Computer Science.

[11]  S. Wölfl,et al.  The Heterogeneous Tool Set , 2007 .

[12]  Nick Benton,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[13]  Florian Rabe,et al.  Kripke Semantics for Martin-Löf's Extensional Type Theory , 2009, TLCA.

[14]  R. Azvan Diaconescu,et al.  Grothendieck Institutions , 2002 .

[15]  Andrew M. Pitts,et al.  Categorical logic , 2001, LICS 2001.

[16]  R. Lathe Phd by thesis , 1988, Nature.

[17]  Till Mossakowski,et al.  Combining and Representing Logical Systems , 1997, Category Theory and Computer Science.

[18]  Michael Kohlhase,et al.  A scalable module system , 2011, Inf. Comput..

[19]  Florian Rabe,et al.  Formalising foundations of mathematics† , 2011, Mathematical Structures in Computer Science.

[20]  Sean McLaughlin,et al.  An Interpretation of Isabelle/HOL in HOL Light , 2006, IJCAR.

[21]  D. Hilbert Über das Unendliche , 1926 .

[22]  Peter Hilton,et al.  The Algebra ℝ I , 1970 .

[23]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[24]  José Meseguer,et al.  General Logics , 2006 .

[25]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[26]  Richard Statman,et al.  Lambda Calculus with Types , 2013, Perspectives in logic.

[27]  Frank Pfenning,et al.  Structural cut elimination , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[28]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[29]  A. Fraenkel,et al.  Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre , 1922 .

[30]  Benjamin Werner,et al.  Importing HOL Light into Coq , 2010, ITP.

[31]  William M. Farmer,et al.  Little Theories , 1992, CADE.

[32]  Alexander Krauss,et al.  A Mechanized Translation from Higher-Order Logic to Set Theory , 2010, ITP.

[33]  Furio Honsell,et al.  Encoding Modal Logics in Logical Frameworks , 1998, Stud Logica.

[34]  José Luiz Fiadeiro,et al.  Structuring Theories on Consequence , 1988, ADT.

[35]  K. Gödel Die Vollständigkeit der Axiome des logischen Funktionenkalküls , 1930 .

[36]  Florian Rabe,et al.  Representing logics and logic translations , 2008 .

[37]  Ian A. Mason,et al.  Using typed lambda calculus to implement formal systems on a machine , 1992, Journal of Automated Reasoning.

[38]  Carsten Schürmann,et al.  System Description: Delphin - A Functional Programming Language for Deductive Systems , 2008, LFMTP@LICS.

[39]  L. E. J. Brouwer,et al.  Over de Grondslagen der Wiskunde , 2009 .

[40]  Joseph A. Goguen,et al.  A Study in the Functions of Programming Methodology: Specifications, Institutions, Charters and Parchments , 1985, CTCS.

[41]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[42]  Narciso Martí-Oliet,et al.  Rewriting Logic as a Logical and Semantic Framework , 1996 .

[43]  Nicolas Bourbaki,et al.  Elements of mathematics , 2004 .

[44]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[45]  Grigore Rosu,et al.  Institution Morphisms , 2013, Formal Aspects of Computing.

[46]  R. Diaconescu Institution-independent model theory , 2008 .

[47]  José Meseguer,et al.  May I Borrow Your Logic? (Transporting Logical Structures Along Maps) , 1997, Theor. Comput. Sci..

[48]  Steven Obua,et al.  Importing HOL into Isabelle/HOL , 2006, IJCAR.

[49]  Samuel B. Williams,et al.  ASSOCIATION FOR COMPUTING MACHINERY , 2000 .

[50]  Marc Aiguier,et al.  Stratified institutions and elementary homomorphisms , 2007, Inf. Process. Lett..

[51]  Furio Honsell,et al.  A framework for defining logics , 1993, JACM.

[52]  A. Tarski,et al.  Arithmetical extensions of relational systems , 1958 .

[53]  Till Mossakowski,et al.  Towards Logical Frameworks in the Heterogeneous Tool Set Hets , 2010, WADT.

[54]  Razvan Diaconescu Proof Systems for Institutional Logic , 2006, J. Log. Comput..

[55]  Andrzej Tarlecki Moving Between Logical Systems , 1995, COMPASS/ADT.

[56]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[57]  Ronald J. Brachman,et al.  An overview of the KL-ONE Knowledge Representation System , 1985 .

[58]  Jon Barwise,et al.  An Introduction to First-Order Logic , 1977 .

[59]  Florian Rabe,et al.  Formalizing Foundations of Mathematics , 2002 .

[60]  Frank Pfenning Structural Cut Elimination: I. Intuitionistic and Classical Logic , 2000, Inf. Comput..

[61]  J. Hintikka,et al.  What is Logic , 2007 .

[62]  Alfred Tarski,et al.  On the Application of Symbolic Logic to Algebra , 1953 .

[63]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Lawrence Charles Paulson,et al.  Isabelle: A Generic Theorem Prover , 1994 .

[65]  Tomasz Borzyszkowski,et al.  Higher-Order Logic and Theorem Proving for Structured Specifications , 1999, WADT.

[66]  E. Zermelo Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .

[67]  José Meseguer,et al.  The HOL/NuPRL Proof Translator (A Practical Approach to Formal Interoperability) , 2001, TPHOLs.

[68]  Till Mossakowski,et al.  The Heterogeneous Tool Set (Hets) , 2007, VERIFY.

[69]  Peter D. Mosses,et al.  Casl Reference Manual , 2004, Lecture Notes in Computer Science.

[70]  Florian Rabe,et al.  Representing Model Theory in a Type-Theoretical Logical Framework , 2009, LSFA.

[71]  Peter B. Andrews An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.

[72]  Ronald J. Brachman,et al.  An Overview of the KL-ONE Knowledge Representation System , 1985, Cogn. Sci..

[73]  Natarajan Shankar,et al.  PVS: A Prototype Verification System , 1992, CADE.

[74]  M. Clavel,et al.  Principles of Maude , 1996, WRLA.

[75]  Brigitte Pientka,et al.  Beluga: A Framework for Programming and Reasoning with Deductive Systems (System Description) , 2010, IJCAR.

[76]  J. Davenport Editor , 1960 .

[77]  William M. Farmer Chiron: A Set Theory with Types, Undefinedness, Quotation, and Evaluation , 2013, ArXiv.

[78]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[79]  P. Martin-Löf An Intuitionistic Theory of Types: Predicative Part , 1975 .

[80]  Markus Wenzel,et al.  Constructive Type Classes in Isabelle , 2006, TYPES.

[81]  M. Gordon HOL: A Proof Generating System for Higher-Order Logic , 1988 .

[82]  de Ng Dick Bruijn,et al.  The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .

[83]  Yves Bertot,et al.  Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .

[84]  Robert Harper,et al.  Structured Theory Presentations and Logic Representations , 1994, Ann. Pure Appl. Log..

[85]  G. B. M. Principia Mathematica , 1911, Nature.

[86]  Frank Pfenning,et al.  Logical Frameworks , 2001, Handbook of Automated Reasoning.

[87]  Virgil Emil Cazanescu,et al.  Weak Inclusion Systems , 1997, Math. Struct. Comput. Sci..

[88]  Michael Kohlhase,et al.  Towards MKM in the large: modular representation and scalable software architecture , 2010, AISC'10/MKM'10/Calculemus'10.

[89]  Monatshefte für Mathematik und Physik , 1892 .

[90]  Till Mossakowski,et al.  Heterogeneous Specification and the Heterogeneous Tool Set , 2004 .

[91]  Jacques Carette,et al.  MathScheme: Project Description , 2011, Calculemus/MKM.

[92]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[93]  F. Honsell,et al.  A Framework for De ning LogicsRobert Harper , 1987 .

[94]  R. Seely,et al.  Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[95]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[96]  John Harrison,et al.  HOL Light: A Tutorial Introduction , 1996, FMCAD.

[97]  John Cartmell,et al.  Generalised algebraic theories and contextual categories , 1986, Ann. Pure Appl. Log..

[98]  Till Mossakowski,et al.  Project Abstract: Logic Atlas and Integrator (LATIN) , 2011, Calculemus/MKM.

[99]  Florian Rabe,et al.  A practical module system for LF , 2009, LFMTP '09.

[100]  Andrzej Trybulec,et al.  Computer Assisted Reasoning with MIZAR , 1985, IJCAI.

[101]  William C. Frederick,et al.  A Combinatory Logic , 1995 .

[102]  B. M. Fulk MATH , 1992 .