A logical framework combining model and proof theory
暂无分享,去创建一个
[1] F. William Lawvere,et al. Adjointness in Foundations , 1969 .
[2] Frank Pfenning,et al. A linear logical framework , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.
[3] Lawrence C. Paulson,et al. LEO-II - A Cooperative Automatic Theorem Prover for Classical Higher-Order Logic (System Description) , 2008, IJCAR.
[4] Frank Pfenning,et al. System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.
[5] Valeria de Paiva,et al. An Institutional View on Categorical Logic , 2007, Int. J. Softw. Informatics.
[6] Joseph A. Goguen,et al. Institutions: abstract model theory for specification and programming , 1992, JACM.
[7] P. Martin-Löf. On the meanings of the logical constants and the justi cations of the logical laws , 1996 .
[8] N. G. de Bruijn,et al. A plea for weaker frameworks , 1991 .
[9] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[10] Thierry Coquand,et al. Intuitionistic model constructions and normalization proofs , 1997, Mathematical Structures in Computer Science.
[11] S. Wölfl,et al. The Heterogeneous Tool Set , 2007 .
[12] Nick Benton,et al. Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.
[13] Florian Rabe,et al. Kripke Semantics for Martin-Löf's Extensional Type Theory , 2009, TLCA.
[14] R. Azvan Diaconescu,et al. Grothendieck Institutions , 2002 .
[15] Andrew M. Pitts,et al. Categorical logic , 2001, LICS 2001.
[16] R. Lathe. Phd by thesis , 1988, Nature.
[17] Till Mossakowski,et al. Combining and Representing Logical Systems , 1997, Category Theory and Computer Science.
[18] Michael Kohlhase,et al. A scalable module system , 2011, Inf. Comput..
[19] Florian Rabe,et al. Formalising foundations of mathematics† , 2011, Mathematical Structures in Computer Science.
[20] Sean McLaughlin,et al. An Interpretation of Isabelle/HOL in HOL Light , 2006, IJCAR.
[21] D. Hilbert. Über das Unendliche , 1926 .
[22] Peter Hilton,et al. The Algebra ℝ I , 1970 .
[23] Lawrence Charles Paulson,et al. Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .
[24] José Meseguer,et al. General Logics , 2006 .
[25] Jean-Yves Girard,et al. Linear Logic , 1987, Theor. Comput. Sci..
[26] Richard Statman,et al. Lambda Calculus with Types , 2013, Perspectives in logic.
[27] Frank Pfenning,et al. Structural cut elimination , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[28] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[29] A. Fraenkel,et al. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre , 1922 .
[30] Benjamin Werner,et al. Importing HOL Light into Coq , 2010, ITP.
[31] William M. Farmer,et al. Little Theories , 1992, CADE.
[32] Alexander Krauss,et al. A Mechanized Translation from Higher-Order Logic to Set Theory , 2010, ITP.
[33] Furio Honsell,et al. Encoding Modal Logics in Logical Frameworks , 1998, Stud Logica.
[34] José Luiz Fiadeiro,et al. Structuring Theories on Consequence , 1988, ADT.
[35] K. Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalküls , 1930 .
[36] Florian Rabe,et al. Representing logics and logic translations , 2008 .
[37] Ian A. Mason,et al. Using typed lambda calculus to implement formal systems on a machine , 1992, Journal of Automated Reasoning.
[38] Carsten Schürmann,et al. System Description: Delphin - A Functional Programming Language for Deductive Systems , 2008, LFMTP@LICS.
[39] L. E. J. Brouwer,et al. Over de Grondslagen der Wiskunde , 2009 .
[40] Joseph A. Goguen,et al. A Study in the Functions of Programming Methodology: Specifications, Institutions, Charters and Parchments , 1985, CTCS.
[41] Jean-Pierre Bourguignon,et al. Mathematische Annalen , 1893 .
[42] Narciso Martí-Oliet,et al. Rewriting Logic as a Logical and Semantic Framework , 1996 .
[43] Nicolas Bourbaki,et al. Elements of mathematics , 2004 .
[44] Leon Henkin,et al. Completeness in the theory of types , 1950, Journal of Symbolic Logic.
[45] Grigore Rosu,et al. Institution Morphisms , 2013, Formal Aspects of Computing.
[46] R. Diaconescu. Institution-independent model theory , 2008 .
[47] José Meseguer,et al. May I Borrow Your Logic? (Transporting Logical Structures Along Maps) , 1997, Theor. Comput. Sci..
[48] Steven Obua,et al. Importing HOL into Isabelle/HOL , 2006, IJCAR.
[49] Samuel B. Williams,et al. ASSOCIATION FOR COMPUTING MACHINERY , 2000 .
[50] Marc Aiguier,et al. Stratified institutions and elementary homomorphisms , 2007, Inf. Process. Lett..
[51] Furio Honsell,et al. A framework for defining logics , 1993, JACM.
[52] A. Tarski,et al. Arithmetical extensions of relational systems , 1958 .
[53] Till Mossakowski,et al. Towards Logical Frameworks in the Heterogeneous Tool Set Hets , 2010, WADT.
[54] Razvan Diaconescu. Proof Systems for Institutional Logic , 2006, J. Log. Comput..
[55] Andrzej Tarlecki. Moving Between Logical Systems , 1995, COMPASS/ADT.
[56] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[57] Ronald J. Brachman,et al. An overview of the KL-ONE Knowledge Representation System , 1985 .
[58] Jon Barwise,et al. An Introduction to First-Order Logic , 1977 .
[59] Florian Rabe,et al. Formalizing Foundations of Mathematics , 2002 .
[60] Frank Pfenning. Structural Cut Elimination: I. Intuitionistic and Classical Logic , 2000, Inf. Comput..
[61] J. Hintikka,et al. What is Logic , 2007 .
[62] Alfred Tarski,et al. On the Application of Symbolic Logic to Algebra , 1953 .
[63] F. W. Lawvere,et al. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[64] Lawrence Charles Paulson,et al. Isabelle: A Generic Theorem Prover , 1994 .
[65] Tomasz Borzyszkowski,et al. Higher-Order Logic and Theorem Proving for Structured Specifications , 1999, WADT.
[66] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I , 1908 .
[67] José Meseguer,et al. The HOL/NuPRL Proof Translator (A Practical Approach to Formal Interoperability) , 2001, TPHOLs.
[68] Till Mossakowski,et al. The Heterogeneous Tool Set (Hets) , 2007, VERIFY.
[69] Peter D. Mosses,et al. Casl Reference Manual , 2004, Lecture Notes in Computer Science.
[70] Florian Rabe,et al. Representing Model Theory in a Type-Theoretical Logical Framework , 2009, LSFA.
[71] Peter B. Andrews. An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.
[72] Ronald J. Brachman,et al. An Overview of the KL-ONE Knowledge Representation System , 1985, Cogn. Sci..
[73] Natarajan Shankar,et al. PVS: A Prototype Verification System , 1992, CADE.
[74] M. Clavel,et al. Principles of Maude , 1996, WRLA.
[75] Brigitte Pientka,et al. Beluga: A Framework for Programming and Reasoning with Deductive Systems (System Description) , 2010, IJCAR.
[76] J. Davenport. Editor , 1960 .
[77] William M. Farmer. Chiron: A Set Theory with Types, Undefinedness, Quotation, and Evaluation , 2013, ArXiv.
[78] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[79] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part , 1975 .
[80] Markus Wenzel,et al. Constructive Type Classes in Isabelle , 2006, TYPES.
[81] M. Gordon. HOL: A Proof Generating System for Higher-Order Logic , 1988 .
[82] de Ng Dick Bruijn,et al. The mathematical language AUTOMATH, its usage, and some of its extensions , 1970 .
[83] Yves Bertot,et al. Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .
[84] Robert Harper,et al. Structured Theory Presentations and Logic Representations , 1994, Ann. Pure Appl. Log..
[85] G. B. M.. Principia Mathematica , 1911, Nature.
[86] Frank Pfenning,et al. Logical Frameworks , 2001, Handbook of Automated Reasoning.
[87] Virgil Emil Cazanescu,et al. Weak Inclusion Systems , 1997, Math. Struct. Comput. Sci..
[88] Michael Kohlhase,et al. Towards MKM in the large: modular representation and scalable software architecture , 2010, AISC'10/MKM'10/Calculemus'10.
[89] Monatshefte für Mathematik und Physik , 1892 .
[90] Till Mossakowski,et al. Heterogeneous Specification and the Heterogeneous Tool Set , 2004 .
[91] Jacques Carette,et al. MathScheme: Project Description , 2011, Calculemus/MKM.
[92] Thierry Coquand,et al. The Calculus of Constructions , 1988, Inf. Comput..
[93] F. Honsell,et al. A Framework for De ning LogicsRobert Harper , 1987 .
[94] R. Seely,et al. Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.
[95] Diego Calvanese,et al. The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.
[96] John Harrison,et al. HOL Light: A Tutorial Introduction , 1996, FMCAD.
[97] John Cartmell,et al. Generalised algebraic theories and contextual categories , 1986, Ann. Pure Appl. Log..
[98] Till Mossakowski,et al. Project Abstract: Logic Atlas and Integrator (LATIN) , 2011, Calculemus/MKM.
[99] Florian Rabe,et al. A practical module system for LF , 2009, LFMTP '09.
[100] Andrzej Trybulec,et al. Computer Assisted Reasoning with MIZAR , 1985, IJCAI.
[101] William C. Frederick,et al. A Combinatory Logic , 1995 .
[102] B. M. Fulk. MATH , 1992 .