Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity

The design of micro- or nanoparticles that can encapsulate sensitive molecules such as drugs, hormones, proteins or peptides is of increasing importance for applications in biotechnology and medicine. Examples are micelles, liposomes and vesicles. The tiny and, in most cases, hollow spheres are used as vehicles for transport and controlled administration of pharmaceutical drugs or nutrients. Here we report a simple strategy to fabricate microspheres by block copolymer self-assembly. The microsphere particles have monodispersed nanopores that can act as pH-responsive gates. They contain a highly porous internal structure, which is analogous to the Schwarz P structure. The internal porosity of the particles contributes to their high sorption capacity and sustained release behaviour. We successfully separated similarly sized proteins using these particles. The ease of particle fabrication by macrophase separation and self-assembly, and the robustness of the particles makes them ideal for sorption, separation, transport and sustained delivery of pharmaceutical substances.

[1]  Daniel A. Hammer,et al.  Molecular Weight Dependence of Polymersome Membrane Elasticity and Stability , 2001 .

[2]  T. Lodge,et al.  Laterally nanostructured vesicles, polygonal bilayer sheets, and segmented wormlike micelles. , 2006, Nano letters.

[3]  Jana Gevertz,et al.  Mean survival times of absorbing triply periodic minimal surfaces. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[5]  Dirk Demuth,et al.  NMR Studies of Single-File Diffusion in Unidimensional Channel Zeolites , 1996, Science.

[6]  Edwin L. Thomas,et al.  The gyroid: A new equilibrium morphology in weakly segregated diblock copolymers , 1994 .

[7]  Daniel A. Hammer,et al.  Molecular Weight Dependence of Polymersome Membrane Structure, Elasticity, and Stability , 2002 .

[8]  Paschalis Alexandridis,et al.  Amphiphilic Block Copolymers: Self-Assembly and Applications , 2000 .

[9]  A. Eisenberg,et al.  Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers , 1998 .

[10]  Stephen Z. D. Cheng,et al.  Self-Assembled Polystyrene-block-poly(ethylene oxide) Micelle Morphologies in Solution , 2006 .

[11]  V. Calo,et al.  Self-assembly in casting solutions of block copolymer membranes , 2013 .

[12]  Y. Lim,et al.  Supramolecular capsules with gated pores from an amphiphilic rod assembly. , 2008, Angewandte Chemie.

[13]  Z. Cui,et al.  Fractionation of HSA and IgG by gas sparged ultrafiltration , 1997 .

[14]  Trevor Douglas,et al.  Host–guest encapsulation of materials by assembled virus protein cages , 1998, Nature.

[15]  A. Yamaguchi,et al.  Self-assembly of a silica–surfactant nanocomposite in a porous alumina membrane , 2004, Nature materials.

[16]  F. Trotta,et al.  PREPARATION AND CHARACTERIZATION OF , 1996 .

[17]  F. Bates,et al.  Polymer-Polymer Phase Behavior , 1991, Science.

[18]  Jiahua Zhu,et al.  Polymersome stomatocytes: controlled shape transformation in polymer vesicles. , 2010, Journal of the American Chemical Society.

[19]  A. R. Kulkarni,et al.  Biodegradable polymeric nanoparticles as drug delivery devices. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[20]  A. Zydney,et al.  Electrostatic effects on protein partitioning in size-exclusion chromatography and membrane ultrafiltration. , 1998, Journal of chromatography. A.

[21]  P. Vekilov,et al.  Dense Liquid Precursor for the Nucleation of Ordered Solid Phases from Solution, Crystal Growth and Design , 2004 .

[22]  A. Schaper,et al.  Charged nanoparticles as protein delivery systems: a feasibility study using lysozyme as model protein. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[23]  K. Janes,et al.  Polysaccharide colloidal particles as delivery systems for macromolecules. , 2001, Advanced drug delivery reviews.

[24]  M. Schick,et al.  Self-assembly of block copolymers , 1996 .

[25]  Klaus-Viktor Peinemann,et al.  Selective separation of similarly sized proteins with tunable nanoporous block copolymer membranes. , 2013, ACS nano.

[26]  G. Riess,et al.  Micellization of block copolymers , 2003 .

[27]  Dennis E. Discher,et al.  Polymer Vesicles , 2022 .

[28]  Dennis E Discher,et al.  Polymersome carriers: from self-assembly to siRNA and protein therapeutics. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[29]  Edwin L. Thomas,et al.  Triply periodic level surfaces as models for cubic tricontinuous block copolymer morphologies , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[31]  R. Nolte,et al.  Vesicles and polymerized vesicles from thiophene-containing rod-coil block copolymers. , 2003, Angewandte Chemie.

[32]  G. Belfort,et al.  Intermolecular forces between proteins and polymer films with relevance to filtration , 1997 .

[33]  F. Bates,et al.  Transition mechanisms for complex ordered phases in block copolymer melts , 1998 .

[34]  Sébastien Lecommandoux,et al.  Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. , 2005, Journal of the American Chemical Society.

[35]  A. Ramos,et al.  Ultrafiltration of blood proteins by experimental polyamide membranes , 1998 .

[36]  C. Booth,et al.  Lamellar-to-gyroid transition in a poly(oxyethylene)–poly(oxybutylene) diblock copolymer melt , 1999 .

[37]  A. Klibanov,et al.  Protein stability in controlled-release systems , 2000, Nature Biotechnology.

[38]  Clemens Bechinger,et al.  Single-file diffusion of colloids in one-dimensional channels. , 2000, Physical review letters.

[39]  Stephen T. Hyde,et al.  Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers , 1988 .

[40]  D. Irvine,et al.  Bio-inspired, bioengineered and biomimetic drug delivery carriers , 2011, Nature Reviews Drug Discovery.

[41]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[42]  Yoshinori Funaki,et al.  Nanoprocessing Based on Bicontinuous Microdomains of Block Copolymers: Nanochannels Coated with Metals , 1997 .

[43]  Klaus-Viktor Peinemann,et al.  Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly. , 2011, ACS nano.

[44]  S. Andersson,et al.  Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers , 1988 .

[45]  H. Osmanbeyoglu,et al.  Thin alumina nanoporous membranes for similar size biomolecule separation , 2009 .

[46]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[47]  D. Hammer,et al.  Polymersomes: tough vesicles made from diblock copolymers. , 1999, Science.

[48]  Wim E. Hennink,et al.  Protein Instability in Poly(Lactic-co-Glycolic Acid) Microparticles , 2000, Pharmaceutical Research.

[49]  T. Azzam,et al.  Fully collapsed (kippah) vesicles: preparation and characterization. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[50]  Sanchao Liu,et al.  Stable polymeric nanoballoons: lyophilization and rehydration of cross-linked liposomes. , 2002, Journal of the American Chemical Society.

[51]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[52]  Daniel T Kamei,et al.  Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. , 2007, Nature materials.