New Developments in Gallium Nitride and the Impact on Power Electronics

Wide bandgap III-nitride semiconductor materials possess superior material properties as compared to silicon, GaAs and other III-V compound materials. Recent achievements in gallium nitride (GaN) technology for optoelectronics have resulted in ultra-bright blue light emitting diodes and lasers, ultraviolet emitters, and solar-blind optical detectors. In the electronic area, drastic improvement of microwave device performance has been achieved, yielding record high power densities of 20-30 W/mm. Novel applications of these materials in high-power electronics for switching, energy conversion and control are just emerging. This paper provides an overview of the state-of-the-art III-nitride wide bandgap technologies and it explores power electronic applications while illustrating the enormous potential that GaN based devices have for overcoming the major challenges of power electronics in the 21st century. The paper discusses the unique material and device properties of GaN-based semiconductors that make them promising for high-power, high-temperature applications. These include high electron mobility and saturation velocity, high sheet carrier concentration at heterojunction interfaces, high breakdown voltages, and low thermal impedance (when grown over SiC or bulk AIN substrates). The chemical inertness and radiation hardness of nitrides are other key properties. As applied to power electronics, the Ill-Nitride technology allows for high-power switching with sub-microsecond and nano-second switching times. The paper will present the innovations that further improve the performance of high-power DC-DC converters, switches and other building blocks. These include novel insulated gate HFET design that significantly expands the allowable input voltage amplitude, further increases the device peak currents, and most importantly, tremendously improves the large-signal stability and reliability. Insulated gate switching devices have been shown to operate at up to 300 degC with no noticeable parameter degradation. Novel monolithic integrated circuits of high-power switches and DC-DC converters and their performance parameters will be presented. The paper also discusses the major challenges associated with modern GaN technology and work in progress to overcome them

[1]  Michael S. Shur,et al.  AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors on SiC substrates , 2000 .

[2]  M. Shur,et al.  MATERIALS PROPERTIES OF NITRIDES: SUMMARY , 2004 .

[3]  M. Asif Khan,et al.  AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire , 2002 .

[4]  M. Khan,et al.  GaN-Al x Ga 1−x N Heterostructures Deposition by Low Pressure Metalorganic Chemical Vapor Deposition for Metal Insulator Semiconductor Field Effect Transistor (Misfet) Devices , 1992 .

[5]  H. Morkoç,et al.  GaN/AlGaN back-illuminated multiple-quantum-well Schottky barrier ultraviolet photodetectors , 2003 .

[6]  Umesh K. Mishra,et al.  Very-high power density AlGaN/GaN HEMTs , 2001 .

[7]  M. Asif Khan,et al.  High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers , 1992 .

[8]  Naoki Kobayashi,et al.  Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN , 2001 .

[9]  T. Sham,et al.  Tuning the electronic behavior of Au nanoparticles with capping molecules , 2002 .

[10]  G. Simin,et al.  Mechanism of current collapse removal in field-plated nitride HFETs , 2005, IEEE Electron Device Letters.

[11]  Ilesanmi Adesida,et al.  AlGaN / GaN HEMTs on SiC with over 100 GHz fT and Low Microwave Noise , 2001 .

[12]  Melville P. Ulmer,et al.  Ultraviolet detectors for astrophysics: present and future , 1995, Photonics West.

[13]  32/spl times/32 ultraviolet Al/sub 0.1/Ga/sub 0.9/N/GaN p-i-n photodetector array , 2000, IEEE Journal of Quantum Electronics.

[14]  E. Santi,et al.  An assessment of wide bandgap semiconductors for power devices , 2003 .

[15]  Michael S. Shur,et al.  Optoelectronic devices based on GaN, AlGaN, InGaN homo-heterojunctions and superlattices , 1995, Photonics West.

[16]  Umesh K. Mishra,et al.  Solar-blind AlGaN-based inverted heterostructure photodiodes , 2000 .

[17]  M. Asif Khan,et al.  Observation of a two‐dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN‐AlxGa1−xN heterojunctions , 1992 .

[18]  M. Asif Khan,et al.  Schottky barrier photodetector based on Mg‐doped p‐type GaN films , 1993 .

[19]  M. Shur,et al.  GaN/AIGaN Heterostructure Devices: Photodetectors and Field-Effect Transistors , 1997 .

[20]  Gary A. Shaw,et al.  Short-range NLOS ultraviolet communication testbed and measurements , 2001, SPIE Defense + Commercial Sensing.

[21]  Michael S. Shur,et al.  AlGaN-based 280nm light-emitting diodes with continuous-wave power exceeding 1mW at 25mA , 2004 .

[22]  G. Simin,et al.  AlGaN/GaN HEMTs on SiC with f/sub T/ of over 120 GHz , 2002, IEEE Electron Device Letters.

[23]  Cole W. Litton,et al.  Solar-blind UV region and UV detector development objectives , 1999, Photonics West.

[24]  M. M. Wong,et al.  High Quantum Efficiency at Low Bias AlxGa1–xN p–i–n Photodiodes , 2001 .

[25]  P. Janke,et al.  High performance microwave power GaN/AlGaN MODFETs grown by RF-assisted MBE , 2000 .

[26]  S. Yoshida,et al.  High-power AlGaN/GaN HFET with a lower on-state resistance and a higher switching time for an inverter circuit , 2003, ISPSD 2003.

[27]  P. Chi,et al.  Transient enhanced diffusion without {311} defects in low energy B+‐implanted silicon , 1995 .

[28]  Kai Chang,et al.  Encyclopedia of RF and microwave engineering , 2005 .

[29]  M. Asif Khan,et al.  High electron mobility GaN/AlxGa1−xN heterostructures grown by low‐pressure metalorganic chemical vapor deposition , 1991 .

[30]  I. Omura,et al.  High breakdown Voltage undoped AlGaN-GaN power HEMT on sapphire substrate and its demonstration for DC-DC converter application , 2004, IEEE Transactions on Electron Devices.

[31]  Albert G. Baca,et al.  Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors , 1998 .

[32]  Theeradetch Detchprohm,et al.  Demonstration of Flame Detection in Room Light Background by Solar‐Blind AlGaN PIN Photodiode , 2001 .

[33]  U. Mishra,et al.  30-W/mm GaN HEMTs by field plate optimization , 2004, IEEE Electron Device Letters.

[34]  Umesh K. Mishra,et al.  High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN , 1999 .

[35]  William D. Goodhue,et al.  GaN avalanche photodiodes grown by hydride vapor-phase epitaxy , 1999 .

[36]  Michael S. Shur,et al.  Lattice and energy band engineering in AlInGaN/GaN heterostructures , 2000 .

[37]  Remis Gaska,et al.  GaN-based acousto-optic devices for blue optoelectronics , 2001, SPIE Optics + Photonics.

[38]  E. Santi,et al.  AlGaN/GaN MOSHFET integrated circuit power converter , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[39]  P. Chapman,et al.  GaN power switching device growth by plasma assisted molecular beam epitaxy , 2002, Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344).

[40]  Hong Wang,et al.  Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management , 2002 .

[41]  M. Shur,et al.  Maximum current in nitride-based heterostructure field-effect transistors , 2002 .

[42]  Hadis Morkoç,et al.  High speed, low noise ultraviolet photodetectors based on GaN p-i-n and AlGaN(p)-GaN(i)-GaN(n)structures , 1997 .

[43]  P. Janke,et al.  GaN/AlGaN high electron mobility transistors with f τ of 110 GHz , 2000 .

[44]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[45]  Naoki Kobayashi,et al.  Milliwatt operation of AlGaN-based single-quantum-well light emitting diode in the ultraviolet region , 2001 .

[46]  Manijeh Razeghi,et al.  Solar-blind AlGaN photodiodes with very low cutoff wavelength , 2000 .

[47]  Low dark current pin ultraviolet photodetectors fabricated on GaN grown by metal organic chemical vapour deposition , 1998 .

[48]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[49]  David R. Clarke,et al.  Large area GaN HEMT power devices for power electronic applications: switching and temperature characteristics , 2003, IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03..

[50]  Gallium Nitride for Electronics , 2005 .

[51]  Gabriel S. Li,et al.  Self-pulsating and bistable VCSEL with controllable intracavity quantum-well saturable absorber , 1997 .

[52]  Henryk Temkin,et al.  Low noise p-π-n GaN ultraviolet photodetectors , 1997 .

[53]  M. Shur,et al.  PIEZOELECTRIC DOPING IN ALINGAN/GAN HETEROSTRUCTURES , 1999 .

[54]  Henryk Temkin,et al.  Schottky barrier photodetectors based on AlGaN , 1998 .

[55]  Manijeh Razeghi,et al.  AlxGa1−xN for solar-blind UV detectors , 2001 .

[56]  Y. Okamoto,et al.  10-W/mm AlGaN-GaN HFET with a field modulating plate , 2003, IEEE Electron Device Letters.

[57]  Michael S. Shur,et al.  Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias , 1994 .

[58]  Manijeh Razeghi,et al.  VISIBLE BLIND GAN P-I-N PHOTODIODES , 1998 .

[59]  Joe C. Campbell,et al.  GaN avalanche photodiodes , 2000 .

[60]  K. Matocha,et al.  High-voltage normally off GaN MOSFETs on sapphire substrates , 2005, IEEE Transactions on Electron Devices.

[61]  A. Lunev,et al.  AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor , 2000, IEEE Electron Device Letters.

[62]  M. Willander,et al.  III–nitrides: Growth, characterization, and properties , 2000 .

[63]  Siddharth Rajana,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in Nand Ga-face AlGaN / GaN heterostructures , 2004 .

[64]  High-performance solar-blind photodetectors based on Al/sub x/Ga/sub 1-x/N heterostructures , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[65]  V. Kaper,et al.  Performance of the AlGaN HEMT structure with a gate extension , 2004, IEEE Transactions on Electron Devices.

[66]  Ilesanmi Adesida,et al.  AlGaN/GaN HEMTs on SiC with over 100 GHz f/sub T/ and low microwave noise , 2001 .