Conducting , Functional Polymers from BioOrganic Molecules for Catalysis

[1]  B. Mahesh,et al.  Fabrication of copper oxide nanoparticles modified carbon paste electrode and its application in simultaneous electroanalysis of guanine, adenine and thymine , 2018, Sensors and Actuators A: Physical.

[2]  A. W. Hassel,et al.  Nanofibrous cobalt oxide for electrocatalysis of CO2 reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution , 2018, Applied Catalysis B: Environmental.

[3]  Luciano D'Agostino Native DNA electronics: is it a matter of nanoscale assembly? , 2018, Nanoscale.

[4]  Mingji Li,et al.  A gold-nanoparticle/horizontal-graphene electrode for the simultaneous detection of ascorbic acid, dopamine, uric acid, guanine, and adenine , 2018, Journal of Solid State Electrochemistry.

[5]  Jing Zhang,et al.  Multiporous molybdenum carbide nanosphere as a new charming electrode material for highly sensitive simultaneous detection of guanine and adenine. , 2018, Biosensors & bioelectronics.

[6]  P. S. Dzhumaev,et al.  Normal and grazing incidence pulsed laser deposition of nanostructured MoS hydrogen evolution catalysts from a MoS2 target , 2018, Optics & Laser Technology.

[7]  Xiaohui Qiu,et al.  Highly Efficient Photocatalytic Hydrogen Evolution by ReS2 via a Two‐Electron Catalytic Reaction , 2018, Advanced materials.

[8]  A. Nandi,et al.  Conductive MoS2 Quantum Dot/Polyaniline Aerogel for Enhanced Electrocatalytic Hydrogen Evolution and Photoresponse Properties , 2018 .

[9]  Meiling Wang,et al.  Facile Synthesis of Cyclodextrin Functionalized Reduced Graphite Oxide with the Aid of Ionic Liquid for Simultaneous Determination of Guanine and Adenine , 2018 .

[10]  P. Shen,et al.  N-Doped Porous Molybdenum Carbide Nanobelts as Efficient Catalysts for Hydrogen Evolution Reaction , 2018 .

[11]  Shiva Hemmati,et al.  Label-free electrochemical DNA biosensor for guanine and adenine by ds-DNA/poly(L-cysteine)/Fe3O4 nanoparticles-graphene oxide nanocomposite modified electrode. , 2018, Biosensors & bioelectronics.

[12]  Y. Tong,et al.  Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts. , 2018, Journal of the American Chemical Society.

[13]  E. Choi,et al.  Optical properties of nucleobase thin films as studied by attenuated total reflection and surface-enhanced Raman spectroscopy , 2018 .

[14]  Kerileng M. Molapo,et al.  Polyaniline-metal organic framework nanocomposite as an efficient electrocatalyst for hydrogen evolution reaction , 2018 .

[15]  L. Gu,et al.  Preparation of High‐Percentage 1T‐Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution , 2018, Advanced materials.

[16]  Davood Hosseini,et al.  Electrodeposited Ni-W nanoparticles: Enhanced catalytic activity toward hydrogen evolution reaction in acidic media , 2018 .

[17]  S. Akbayrak,et al.  Nanoceria-Supported Ruthenium(0) Nanoparticles: Highly Active and Stable Catalysts for Hydrogen Evolution from Water. , 2018, ACS applied materials & interfaces.

[18]  B. Xiang,et al.  WSe2/rGO hybrid structure: A stable and efficient catalyst for hydrogen evolution reaction , 2018 .

[19]  A. Rad,et al.  Potential of metal–fullerene hybrids as strong nanocarriers for cytosine and guanine nucleobases: A detailed DFT study , 2018 .

[20]  S. Yi,et al.  Molybdenum Sulphoselenophosphide Spheroids as an Effective Catalyst for Hydrogen Evolution Reaction. , 2018, Small.

[21]  L. Mai,et al.  MoB/g-C3 N4 Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution. , 2018, Angewandte Chemie.

[22]  W. Shi,et al.  Sensitive and selective pentacene-guanine field-effect transistor sensing of nitrogen dioxide and interferent vapor analytes , 2018 .

[23]  N. G. Gurudatt,et al.  Applications of conducting polymer composites to electrochemical sensors: A review , 2017 .

[24]  S. Jesny,et al.  Electrocatalytic resolution of guanine, adenine and cytosine along with uric acid on poly (4-amino-3-hydroxy naphthalene-1-sulfonic acid) modified glassy carbon electrode , 2017 .

[25]  Mao Miao,et al.  Molybdenum Carbide-Based Electrocatalysts for Hydrogen Evolution Reaction. , 2017, Chemistry.

[26]  Yifan Zheng,et al.  Increased mobility and on/off ratio in organic field-effect transistors using low-cost guanine-pentacene multilayers , 2017 .

[27]  J. Baek,et al.  Macroporous Inverse Opal-like MoxC with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. , 2017, ACS nano.

[28]  Jie Zeng,et al.  Molybdenum Disulfide-Black Phosphorus Hybrid Nanosheets as a Superior Catalyst for Electrochemical Hydrogen Evolution. , 2017, Nano letters.

[29]  N. Winograd,et al.  Ionization Probability in Molecular Secondary Ion Mass Spectrometry: Protonation Efficiency of Sputtered Guanine Molecules Studied by Laser Postionization , 2017 .

[30]  P. Stadler,et al.  Increase in electron scattering length in PEDOT:PSS by a triflic acid post-processing , 2017, Monatshefte für Chemie - Chemical Monthly.

[31]  Chen Hu,et al.  Hydrogen evolution electrocatalysis with binary-nonmetal transition metal compounds , 2017 .

[32]  Michael K.H. Leung,et al.  Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction , 2017 .

[33]  L. Curtiss,et al.  Tailoring the Edge Structure of Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon Dioxide. , 2017, ACS nano.

[34]  Hui Peng,et al.  Electrochemical determination of hydrazine based on polydopamine-reduced graphene oxide nanocomposite , 2017 .

[35]  N. S. Sariciftci,et al.  Improvement of Catalytic Activity by Nanofibrous CuInS2 for Electrochemical CO2 Reduction. , 2016, ACS applied materials & interfaces.

[36]  S. Kelley,et al.  High-Density Nanosharp Microstructures Enable Efficient CO2 Electroreduction. , 2016, Nano letters.

[37]  S. Rawlinson,et al.  Fabrication and electrochemical characterization of polydopamine redox polymer modified screen-printed carbon electrode for the detection of guanine , 2016 .

[38]  A. Yu,et al.  Advanced Catalytic and Electrocatalytic Performances of Polydopamine‐Functionalized Reduced Graphene Oxide‐Palladium Nanocomposites , 2016 .

[39]  Shen-ming Chen,et al.  A Facile Electrochemical Preparation of Reduced Graphene Oxide@Polydopamine Composite: A Novel Electrochemical Sensing Platform for Amperometric Detection of Chlorpromazine , 2016, Scientific Reports.

[40]  Jun Jin,et al.  Polydopamine-functionalized multi-walled carbon nanotubes-supported palladium–lead bimetallic alloy nanoparticles as highly efficient and robust catalysts for ethanol oxidation , 2016 .

[41]  Oleksandr Voznyy,et al.  Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration , 2016, Nature.

[42]  B. Pan,et al.  Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction , 2016, Nature Communications.

[43]  Thilak K. Mudalige,et al.  Polydopamine-Coated Manganese Complex/Graphene Nanocomposite for Enhanced Electrocatalytic Activity Towards Oxygen Reduction , 2016, Scientific Reports.

[44]  L. Seefeldt,et al.  CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane. , 2016, Inorganic chemistry.

[45]  N. S. Sariciftci,et al.  Hydrogen‐Bonded Organic Semiconductors as Stable Photoelectrocatalysts for Efficient Hydrogen Peroxide Photosynthesis , 2016 .

[46]  N. S. Sariciftci,et al.  Local order drives the metallic state in PEDOT:PSS , 2016 .

[47]  Dong Liu,et al.  Electro- and Photoreduction of Carbon Dioxide: The Twain Shall Meet at Copper Oxide/Copper Interfaces , 2016 .

[48]  G. Wallace,et al.  Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO , 2016 .

[49]  E. Stach,et al.  Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene , 2016, Nature Communications.

[50]  Qiang Sun,et al.  Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons , 2016 .

[51]  S. Sultana,et al.  A review of harvesting clean fuels from enzymatic CO2 reduction , 2016 .

[52]  Guang Yang,et al.  Selectivity on Etching: Creation of High-Energy Facets on Copper Nanocrystals for CO2 Electrochemical Reduction. , 2016, ACS nano.

[53]  Guido Mul,et al.  Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction , 2016, Nature Communications.

[54]  Yunpei Zhu,et al.  Biochemistry-inspired direct synthesis of nitrogen and phosphorus dual-doped microporous carbon spheres for enhanced electrocatalysis. , 2016, Chemical communications.

[55]  Jinlong Yang,et al.  Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel , 2016, Nature.

[56]  T. Agapie,et al.  Four-electron deoxygenative reductive coupling of carbon monoxide at a single metal site , 2015, Nature.

[57]  Yao Zheng,et al.  Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution , 2016 .

[58]  Marie Schmidt Photocatalysis Science And Technology , 2016 .

[59]  Charlie Tsai,et al.  Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. , 2016, Nature materials.

[60]  Mingda Li,et al.  Low‐Dimensional Conduction Mechanisms in Highly Conductive and Transparent Conjugated Polymers , 2015, Advanced materials.

[61]  N. S. Sariciftci,et al.  Bioconjugation of hydrogen-bonded organic semiconductors with functional proteins , 2015 .

[62]  Giuseppe Romanazzi,et al.  Epindolidiones—Versatile and Stable Hydrogen‐Bonded Pigments for Organic Field‐Effect Transistors and Light‐Emitting Diodes , 2015 .

[63]  Jakob Kibsgaard,et al.  Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. , 2014, Angewandte Chemie.

[64]  Alán Aspuru-Guzik,et al.  Hydrogen-bonded diketopyrrolopyrrole (DPP) pigments as organic semiconductors , 2014, Organic electronics.

[65]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[66]  M. Buehler,et al.  Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy. , 2014, Accounts of chemical research.

[67]  P. Král,et al.  Robust carbon dioxide reduction on molybdenum disulphide edges , 2014, Nature Communications.

[68]  Xiaoming Ge,et al.  Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction , 2014 .

[69]  N. S. Sariciftci,et al.  Direct Electrochemical Capture and Release of Carbon Dioxide Using an Industrial Organic Pigment: Quinacridone** , 2014, Angewandte Chemie.

[70]  Nathan S Lewis,et al.  Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. , 2014, Angewandte Chemie.

[71]  Lehui Lu,et al.  Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. , 2014, Chemical reviews.

[72]  Feng Jiao,et al.  A selective and efficient electrocatalyst for carbon dioxide reduction , 2014, Nature Communications.

[73]  T. Meyer,et al.  Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. , 2014, Journal of the American Chemical Society.

[74]  Mihai Irimia-Vladu,et al.  "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future. , 2014, Chemical Society reviews.

[75]  A. Yu,et al.  Preparation and Electrocatalytic Properties of Polydopamine Functionalized Reduced Graphene Oxide-Silver Nanocomposites , 2014, Electrocatalysis.

[76]  B. Freeman,et al.  Perspectives on poly(dopamine) , 2013 .

[77]  Michel Dupuis,et al.  Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. , 2013, Chemical reviews.

[78]  Radosław Mrówczyński,et al.  Structure of polydopamine: a never-ending story? , 2013, Langmuir : the ACS journal of surfaces and colloids.

[79]  Michael J. Tarlov,et al.  Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[80]  Jens K Nørskov,et al.  Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO. , 2013, The journal of physical chemistry letters.

[81]  G. Eda,et al.  Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution. , 2012, Nature materials.

[82]  V. Ball,et al.  Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: insights in the polydopamine deposition mechanism. , 2012, Journal of colloid and interface science.

[83]  Thomas F. Jaramillo,et al.  Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity , 2012 .

[84]  Graeme R. Hanson,et al.  Role of semiconductivity and ion transport in the electrical conduction of melanin , 2012, Proceedings of the National Academy of Sciences.

[85]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[86]  T. Cundari,et al.  CO2 Reduction on Transition Metal (Fe, Co, Ni, and Cu) Surfaces: In Comparison with Homogeneous Catalysis , 2012 .

[87]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[88]  M. Buehler,et al.  Deposition Mechanism and Properties of Thin Polydopamine Films for High Added Value Applications in Surface Science at the Nanoscale , 2011, BioNanoScience.

[89]  M. Matsumoto,et al.  Oxygen-Enhanced Dissolution of Platinum in Acidic Electrochemical Environments , 2011 .

[90]  V. Sundström,et al.  Functionality of epidermal melanin pigments: current knowledge on UV-dissipative mechanisms and research perspectives. , 2011, Physical chemistry chemical physics : PCCP.

[91]  J. Gracio,et al.  Dopamine-melanin film deposition depends on the used oxidant and buffer solution. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[92]  K. Prince,et al.  Guanine adsorption on the Cu(110) surface , 2011 .

[93]  Eric N. Jacobsen,et al.  Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts , 2010, Proceedings of the National Academy of Sciences.

[94]  Shougang Chen,et al.  Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 Stainless Steel , 2010 .

[95]  Yugen Zhang,et al.  Recent developments in carbon dioxide utilization under mild conditions. , 2010, Dalton transactions.

[96]  Wei-min Liu,et al.  Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application , 2010 .

[97]  M. Aresta Carbon dioxide as chemical feedstock , 2010 .

[98]  Andreas Züttel,et al.  Hydrogen: the future energy carrier , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[99]  Su-Moon Park,et al.  Electrochemical impedance spectroscopy. , 2010, Annual review of analytical chemistry.

[100]  M. Adinolfi,et al.  Disentangling eumelanin "black chromophore": visible absorption changes as signatures of oxidation state- and aggregation-dependent dynamic interactions in a model water-soluble 5,6-dihydroxyindole polymer. , 2009, Journal of the American Chemical Society.

[101]  Paul Meredith,et al.  The supramolecular structure of melanin , 2009 .

[102]  J. Xin,et al.  Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine , 2008 .

[103]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[104]  J. Nørskov,et al.  Hydrogen evolution on nano-particulate transition metal sulfides. , 2008, Faraday discussions.

[105]  M. Hitchman,et al.  Chemical Vapour Deposition: Precursors, Processes and Applications , 2008 .

[106]  H. Ogasawara,et al.  Geometrical characterization of adenine and guanine on Cu(110) by NEXAFS, XPS, and DFT calculation , 2007 .

[107]  H. Ju,et al.  A Molecularly Imprinted Copolymer Designed for Enantioselective Recognition of Glutamic Acid , 2007 .

[108]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[109]  Michael D Shultz,et al.  Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles. , 2007, Journal of the American Chemical Society.

[110]  Paul Meredith,et al.  The physical and chemical properties of eumelanin. , 2006, Pigment cell research.

[111]  Meiling Liu,et al.  Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions , 2006 .

[112]  Mark R Pederson,et al.  Towards structure-property-function relationships for eumelanin. , 2005, Soft matter.

[113]  C. Cobet,et al.  Ellipsometry from infrared to vacuum ultraviolet: Structural properties of thin anisotropic guanine films on silicon , 2005 .

[114]  A. Takano,et al.  Adsorption of cytosine, thymine, guanine and adenine on Cu(1 1 0) studied by infrared reflection absorption spectroscopy , 2004 .

[115]  Michele Aresta,et al.  Carbon dioxide recovery and utilization , 2003 .

[116]  M. Hitchman,et al.  Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol , 2002 .

[117]  Ernst Worrell,et al.  The hydrogen economy, the creation of the worldwide energy web and the redistribution of power on earth , 2002 .

[118]  A. Heeger,et al.  Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials , 2001, Angewandte Chemie.

[119]  C. Reeves,et al.  Liquid injection metal organic chemical vapour deposition of lead–scandium–tantalate thin films for infrared devices , 2000 .

[120]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[121]  M. Higuchi,et al.  A Novel Synthetic Metal Catalytic System. , 1997 .

[122]  M. Higuchi,et al.  CONSTRUCTION OF PALLADIUM-POLYPYRROLE CATALYTIC SYSTEM IN THE WACKER OXIDATION , 1996 .

[123]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[124]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[125]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[126]  J. Florián,et al.  Scaled quantum mechanical force fields and vibrational spectra of solid state nucleic acid constituents. 4. N7-Protonated guanine , 1992 .

[127]  Arthur J. Epstein,et al.  Polyanilines: a novel class of conducting polymers , 1989 .

[128]  Wu-Song Huang,et al.  Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes , 1986 .

[129]  Alan G. MacDiarmid,et al.  ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime , 1986 .

[130]  M. Graetzel,et al.  Energy Resources through Photochemistry and Catalysis , 1983 .

[131]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[132]  J McGinness,et al.  Amorphous Semiconductor Switching in Melanins , 1974, Science.

[133]  J. McGinness Mobility Gaps: A Mechanism for Band Gaps in Melanins , 1972, Science.

[134]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .