An overview of spatial microscopic and accelerated kinetic Monte Carlo methods

The microscopic spatial kinetic Monte Carlo (KMC) method has been employed extensively in materials modeling. In this review paper, we focus on different traditional and multiscale KMC algorithms, challenges associated with their implementation, and methods developed to overcome these challenges. In the first part of the paper, we compare the implementation and computational cost of the null-event and rejection-free microscopic KMC algorithms. A firmer and more general foundation of the null-event KMC algorithm is presented. Statistical equivalence between the null-event and rejection-free KMC algorithms is also demonstrated. Implementation and efficiency of various search and update algorithms, which are at the heart of all spatial KMC simulations, are outlined and compared via numerical examples. In the second half of the paper, we review various spatial and temporal multiscale KMC methods, namely, the coarse-grained Monte Carlo (CGMC), the stochastic singular perturbation approximation, and the τ-leap methods, introduced recently to overcome the disparity of length and time scales and the one-at-a time execution of events. The concepts of the CGMC and the τ-leap methods, stochastic closures, multigrid methods, error associated with coarse-graining, a posteriori error estimates for generating spatially adaptive coarse-grained lattices, and computational speed-up upon coarse-graining are illustrated through simple examples from crystal growth, defect dynamics, adsorption–desorption, surface diffusion, and phase transitions.

[1]  Neil L. Allan,et al.  Atomistic simulations of surface diffusion and segregation in ceramics , 2006 .

[2]  Eric Vanden-Eijnden,et al.  Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. , 2005, The Journal of chemical physics.

[3]  W. A. Goddard,et al.  A multiscale approach for modeling crystalline solids , 2001 .

[4]  William H. Press,et al.  Numerical recipes , 1990 .

[5]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[6]  S. Das Sarma,et al.  Quantum dot self-assembly in growth of strained-layer thin films: A kinetic Monte Carlo study , 2000 .

[7]  C. Rao,et al.  Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm , 2003 .

[8]  George Stephanopoulos,et al.  Multiresolution analysis in statistical mechanics. II. The wavelet transform as a basis for Monte Carlo simulations on lattices , 2003 .

[9]  George H. Gilmer,et al.  Lattice Monte Carlo models of thin film deposition , 2000 .

[10]  Jacobsen,et al.  Interatomic interactions in the effective-medium theory. , 1987, Physical review. B, Condensed matter.

[11]  Sunggyu Lee,et al.  Encyclopedia of Chemical Processing , 2005 .

[12]  Kenneth Haug,et al.  Kinetic Monte Carlo study of competing hydrogen pathways into connected (100), (110), and (111) Ni surfaces , 2003 .

[13]  Linda J. Broadbelt,et al.  Generic Monte Carlo Tool for Kinetic Modeling , 2001 .

[14]  Hong Li,et al.  Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. , 2004, The Journal of chemical physics.

[15]  G. H. Nancollas,et al.  Kinetics of crystal growth in urine. , 1984, Kidney international.

[16]  Markos A. Katsoulakis,et al.  Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles , 2003 .

[17]  Talid Sinno,et al.  Role of configurational entropy in the thermodynamics of clusters of point defects in crystalline solids , 2005 .

[18]  J. Edwards,et al.  Computational modeling reveals molecular details of epidermal growth factor binding , 2005, BMC Cell Biology.

[19]  Steven D. Kenny,et al.  Diffusion dynamics of defects in Fe and Fe-P systems , 2005 .

[20]  R. Ghez,et al.  A Primer of Diffusion Problems , 1988 .

[21]  Matthew Neurock,et al.  First-principles-based molecular simulation of heterogeneous catalytic surface chemistry , 1998 .

[22]  Dionisios G. Vlachos Molecular Modeling for Non-Equilibrium Chemical Processes , 2005 .

[23]  R. Ziff,et al.  Kinetic phase transitions in an irreversible surface-reaction model. , 1986, Physical review letters.

[24]  Arthur F. Voter,et al.  Introduction to the Kinetic Monte Carlo Method , 2007 .

[25]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[26]  Richard Ghez,et al.  A Primer of Diffusion Problems: GHEZ:A PRIMER OF DIFFUSIO O-BK , 2005 .

[27]  Abhijit Chatterjee,et al.  Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures. , 2006, The Journal of chemical physics.

[28]  N. Goldenfeld Lectures On Phase Transitions And The Renormalization Group , 1972 .

[29]  Henning Hopf,et al.  Beyond the Molecular Frontier. Challenges for Chemistry and Chemical Engineering. Herausgegeben vom Board on Chemical Sciences and Technologies. , 2004 .

[30]  Lorenzo Malerba,et al.  Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach , 2004 .

[31]  Daan Frenkel,et al.  Simulation of liquids and solids , 1987 .

[32]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[33]  J. Gale,et al.  Computer modelling as a technique in materials chemistry , 1994 .

[34]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[35]  Abhijit Chatterjee,et al.  Numerical Assessment of Theoretical Error Estimates in Coarse-Grained Kinetic Monte Carlo Simulations: Application to Surface Diffusion , 2005 .

[36]  Vladimiros Nikolakis,et al.  Modeling of zeolite L crystallization using continuum time Monte Carlo simulations , 1999 .

[37]  D. Vlachos,et al.  Binomial distribution based tau-leap accelerated stochastic simulation. , 2005, The Journal of chemical physics.

[38]  R. Johnson,et al.  Mechanisms, models and methods of vapor deposition , 2001 .

[39]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[40]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[41]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[42]  David J. Wales,et al.  Energy landscapes: calculating pathways and rates , 2006 .

[43]  D. Gillespie Approximate accelerated stochastic simulation of chemically reacting systems , 2001 .

[44]  J. Edwards,et al.  Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations. , 2006, Biophysical chemistry.

[45]  Muruhan Rathinam,et al.  Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method , 2003 .

[46]  D. G. Vlachos,et al.  VALIDATION OF THE MESOSCOPIC THEORIES AND THEIR APPLICATION TO COMPUTING CONCENTRATION DEPENDENT DIFFUSIVITIES , 2001 .

[47]  Abhijit Chatterjee,et al.  Temporal acceleration of spatially distributed kinetic Monte Carlo simulations , 2006 .

[48]  Abhijit Chatterjee,et al.  Systems tasks in nanotechnology via hierarchical multiscale modeling : Nanopattern formation in heteroepitaxy , 2007 .

[49]  Steffen Renisch,et al.  Dynamics of adatom motion under the influence of mutual interactions: O/Ru(0001) , 1999 .

[50]  T. Schulze Kinetic Monte Carlo simulations with minimal searching. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Arup K. Chakraborty,et al.  Molecular modeling and theory in chemical engineering , 2001 .

[52]  Abhijit Chatterjee,et al.  Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules. , 2004, The Journal of chemical physics.

[53]  K. Binder Monte Carlo methods in statistical physics , 1979 .

[54]  Michael A. Gibson,et al.  Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels , 2000 .

[55]  Dale F. Rudd,et al.  The Microkinetics of heterogeneous catalysis , 1993 .

[56]  W. V. D. Van de Ven,et al.  The tumor suppressor Scrib interacts with the zyxin-related protein LPP, which shuttles between cell adhesion sites and the nucleus , 2005, BMC Cell Biology.

[57]  Markos A. Katsoulakis,et al.  Information Loss in Coarse-Graining of Stochastic Particle Dynamics , 2006 .

[58]  Andrew J. Majda,et al.  Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems , 2003 .

[59]  G. Henkelman,et al.  Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table , 2001 .

[60]  A. Chatterjee,et al.  Net-event kinetic Monte Carlo for overcoming stiffness in spatially homogeneous and distributed systems , 2005, Comput. Chem. Eng..

[61]  D. Vlachos Stochastic modeling of chemical microreactors with detailed kinetics—induction times and ignitions of H2 in air , 1998 .

[62]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Preface , 2005 .

[63]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Vlachos,et al.  Derivation and validation of mesoscopic theories for diffusion of interacting molecules , 2000, Physical review letters.

[65]  W. H. Weinberg,et al.  Theoretical foundations of dynamical Monte Carlo simulations , 1991 .

[66]  A. Voter,et al.  Classically exact overlayer dynamics: Diffusion of rhodium clusters on Rh(100). , 1986, Physical review. B, Condensed matter.

[67]  Dimitrios Maroudas,et al.  Multiscale modeling of hard materials: Challenges and opportunities for chemical engineering , 2000 .

[68]  A. Voter,et al.  Extending the Time Scale in Atomistic Simulation of Materials Annual Re-views in Materials Research , 2002 .

[69]  H. Haken,et al.  Synergetics , 1988, IEEE Circuits and Devices Magazine.

[70]  Abhijit Chatterjee,et al.  Time accelerated Monte Carlo simulations of biological networks using the binomial r-leap method , 2005, Bioinform..

[71]  Anne Auger,et al.  R-leaping: accelerating the stochastic simulation algorithm by reaction leaps. , 2006, The Journal of chemical physics.

[72]  D G Vlachos,et al.  Overcoming stiffness in stochastic simulation stemming from partial equilibrium: a multiscale Monte Carlo algorithm. , 2005, The Journal of chemical physics.

[73]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[74]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[75]  E. Wicke,et al.  Unstable and Oscillatory Behaviour in Heterogeneous Catalysis , 1980 .

[76]  V. Zhdanov,et al.  KINETICS OF RAPID REACTIONS ON NANOMETER CATALYST PARTICLES , 1997 .

[77]  Muruhan Rathinam,et al.  The numerical stability of leaping methods for stochastic simulation of chemically reacting systems. , 2004, The Journal of chemical physics.

[78]  J. Rawlings,et al.  Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics , 2002 .

[79]  G. Henkelman,et al.  Comparison of methods for finding saddle points without knowledge of the final states. , 2004, The Journal of chemical physics.

[80]  D. Frenkel,et al.  Simulation of liquids and solids : molecular dynamics and Monte Carlo methods in statistical mechanics , 1987 .

[81]  Vlachos,et al.  Kinetics of faceting of crystals in growth, etching, and equilibrium. , 1993, Physical review. B, Condensed matter.

[82]  T. Schulze A hybrid scheme for simulating epitaxial growth , 2004 .

[83]  James W. Evans,et al.  Catalytic reaction kinetics near a first-order poisoning transition , 1991 .

[84]  Tianhai Tian,et al.  A multi-scaled approach for simulating chemical reaction systems. , 2004, Progress in biophysics and molecular biology.

[85]  D G Vlachos,et al.  Spatially adaptive grand canonical ensemble Monte Carlo simulations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  R. Aris,et al.  The effects of phase transitions, surface diffusion, and defects on surface catalyzed reactions: Fluctuations and oscillations , 1990 .

[87]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[88]  Dimitrios Maroudas,et al.  Modeling of radical-surface interactions in the plasma-enhanced chemical vapor deposition of silicon thin films , 2001 .

[89]  N Le Novère,et al.  Conformational spread in a ring of proteins: a stochastic approach to allostery. , 2001, Journal of molecular biology.

[90]  B. C. Garrett,et al.  Current status of transition-state theory , 1983 .

[91]  W. H. Weinberg,et al.  Dynamic Monte Carlo with a proper energy barrier: Surface diffusion and two‐dimensional domain ordering , 1989 .

[92]  Matthew Neurock,et al.  First-Principles-Based Monte Carlo Simulation of Ethylene Hydrogenation Kinetics on Pd , 2000 .

[93]  Dionisios G. Vlachos,et al.  Monte Carlo algorithms for complex surface reaction mechanisms: efficiency and accuracy , 2001 .

[94]  A. Jansen,et al.  Monte Carlo simulations of surface reactions , 1997 .

[95]  J. P. van der Eerden,et al.  Survey of Monte Carlo simulations of crystal surfaces and crystal growth , 1978 .

[96]  N. Soneda,et al.  Defect production, annealing kinetics and damage evolution in α-Fe: An atomic-scale computer simulation , 1998 .

[97]  Timothy O. Drews,et al.  Evolution of Surface Roughness during Copper Electrodeposition in the Presence of Additives Comparison of Experiments and Monte Carlo Simulations , 2003 .

[98]  K. Kremer,et al.  Multiscale simulation in polymer science , 2002 .

[99]  R. Masel Principles of Adsorption and Reaction on Solid Surfaces , 1996 .

[100]  A. Arkin,et al.  It's a noisy business! Genetic regulation at the nanomolar scale. , 1999, Trends in genetics : TIG.

[101]  John H. Seinfeld,et al.  Molecular Modeling and Theory in Chemical Engineering , 2001 .

[102]  George Stephanopoulos,et al.  Multiresolution analysis in statistical mechanics. I. Using wavelets to calculate thermodynamic properties , 2003 .

[103]  D. Vlachos A Review of Multiscale Analysis: Examples from Systems Biology, Materials Engineering, and Other Fluid–Surface Interacting Systems , 2005 .

[104]  James B. Adams,et al.  Kinetic lattice Monte Carlo simulation of facet growth rate , 2000 .

[105]  R Gomer Diffusion of adsorbates on metal surfaces , 1990 .

[106]  Richard M. Murray,et al.  Reduction and identification methods for Markovian control systems, with application to thin film deposition , 2004 .

[107]  P. Griffin,et al.  Point defects and dopant diffusion in silicon , 1989 .

[108]  Peter J Woolf,et al.  Self organization of membrane proteins via dimerization. , 2003, Biophysical chemistry.

[109]  K. Burrage,et al.  Binomial leap methods for simulating stochastic chemical kinetics. , 2004, The Journal of chemical physics.

[110]  K. Binder Atomistic modeling of materials properties by Monte Carlo Simulation , 1992 .

[111]  Taiji Noda,et al.  Modeling of indium diffusion and end-of-range defects in silicon using a kinetic Monte Carlo simulation , 2003 .

[112]  G. H. Gilmer,et al.  Simulation of Crystal Growth with Surface Diffusion , 1972 .

[113]  Babak Sadigh,et al.  MECHANISM OF BORON DIFFUSION IN SILICON : AN AB INITIO AND KINETIC MONTE CARLO STUDY , 1999 .

[114]  Jpl John Segers,et al.  Efficient Monte Carlo methods for the simulation of catalytic surface reactions , 1998 .

[115]  Edward J. Maginn,et al.  Impact of confinement on zeolite cracking selectivity via Monte Carlo integration , 2000 .

[116]  A. Majda,et al.  Coarse-grained stochastic processes for microscopic lattice systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Dionisios G. Vlachos,et al.  Recent developments on multiscale, hierarchical modeling of chemical reactors , 2002 .

[118]  Salvo Coffa,et al.  ROLE OF EXTENDED VACANCY-VACANCY INTERACTION ON THE RIPENING OF VOIDS IN SILICON , 1999 .

[119]  G. Dienes,et al.  Radiation Effects in Solids , 1953 .

[120]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[121]  C. R. A. Catlow Computer Modeling as a Technique in Materials Chemistry , 1998 .

[122]  Dimitri D. Vvedensky,et al.  Multiscale modelling of nanostructures , 2004 .

[123]  G. Gilmer,et al.  Computer Models of Crystal Growth , 1980, Science.

[124]  Linda R Petzold,et al.  The slow-scale stochastic simulation algorithm. , 2005, The Journal of chemical physics.

[125]  M. Jaraiza,et al.  Kinetic Monte Carlo simulations: an accurate bridge between ab initio calculations and standard process experimental data , 2000 .

[126]  H. Resat,et al.  Probability-Weighted Dynamic Monte Carlo Method for Reaction Kinetics Simulations , 2001 .

[127]  Joshua M. Kanter,et al.  On-lattice kinetic Monte carlo simulations of point defect aggregation in entropically influenced crystalline systems , 2005 .

[128]  Talat S. Rahman,et al.  Self-learning kinetic Monte Carlo method: Application to Cu(111) , 2005 .

[129]  L. Sander,et al.  Multiscale kinetic Monte Carlo algorithm for simulating epitaxial growth , 2005, cond-mat/0504272.

[130]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[131]  A. Jansen Monte Carlo simulations of chemical reactions on a surface with time-dependent reaction-rate constants , 1995 .

[132]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[133]  Nicolas Le Novère,et al.  STOCHSIM: modelling of stochastic biomolecular processes , 2001, Bioinform..

[134]  J. Nørskov,et al.  Adsorption-induced step formation. , 2001, Physical review letters.

[135]  Mica Grujicic,et al.  Multi-length scale modeling of chemical vapor deposition of titanium nitride coatings , 2001 .

[136]  C. P. Flynn,et al.  Point Defects and Diffusion , 1973 .

[137]  Yiannis N Kaznessis,et al.  An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks. , 2005, The Journal of chemical physics.

[138]  D. Sholl,et al.  A generalized surface hopping method , 1998 .

[139]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[140]  E. Kaldis Current Topics in Materials Science , 1980 .

[141]  Dimitri D. Vvedensky,et al.  Continuous-space Monte Carlo simulations of epitaxial growth , 1993 .

[142]  Randall Q. Snurr,et al.  Applications of Molecular Modeling in Heterogeneous Catalysis Research , 2000 .

[143]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[144]  D. Vlachos,et al.  Validation of mesoscopic theory and its application to computing concentration dependent diffusivities , 2001 .

[145]  George H. Gilmer,et al.  Multi-lattice Monte Carlo model of thin films , 1999 .

[146]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[147]  Panagiotis D. Christofides,et al.  Feedback control of surface roughness of GaAs [001] thin films using kinetic Monte-Carlo models , 2004, Proceedings of the 2004 American Control Conference.

[148]  Peter Kratzer,et al.  Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations , 2003 .

[149]  Jean-Pierre Fouassier,et al.  Photophysics of a Bridged 7-Diethylamino-4-methyl-coumarin C102: Studying the Hydrogen Bonding Effect by Time Resolved Stimulated Emission , 2001 .

[150]  Scott M. Auerbach,et al.  Theory and simulation of jump dynamics, diffusion and phase equilibrium in nanopores , 2000 .

[151]  R. Aris,et al.  The effect of phase transitions, surface diffusion, and defects on heterogeneous reactions: multiplicities and fluctuations , 1991 .

[152]  D. Vlachos,et al.  Mesoscopic modeling of chemical reactivity , 2004 .

[153]  Markos A. Katsoulakis,et al.  Bridging the gap of multiple scales: From microscopic, to mesoscopic, to macroscopic models , 2001 .

[154]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[155]  Scheffler,et al.  Island nucleation in thin-film epitaxy: A first-principles investigation , 2000, Physical review letters.

[156]  Noam Bernstein,et al.  Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture , 1998 .

[157]  M. Tuckerman,et al.  IN CLASSICAL AND QUANTUM DYNAMICS IN CONDENSED PHASE SIMULATIONS , 1998 .