Parametric Level Set Methods for Inverse Problems

In this paper, a parametric level set method for reconstruction of obstacles in general inverse problems is considered. General evolution equations for the reconstruction of unknown obstacles are derived in terms of the underlying level set parameters. We show that using the appropriate form of parameterizing the level set function results in a significantly lower dimensional problem, which bypasses many difficulties with traditional level set methods, such as regularization, reinitialization, and use of signed distance function. Moreover, we show that from a computational point of view, low order representation of the problem paves the way for easier use of Newton and quasi-Newton methods. Specifically for the purposes of this paper, we parameterize the level set function in terms of adaptive compactly supported radial basis functions, which, used in the proposed manner, provide flexibility in presenting a larger class of shapes with fewer terms. Also they provide a “narrow-banding” advantage which can further reduce the number of active unknowns at each step of the evolution. The performance of the proposed approach is examined in three examples of inverse problems, i.e., electrical resistance tomography, X-ray computed tomography, and diffuse optical tomography.

[1]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[2]  Stanley Osher,et al.  A survey on level set methods for inverse problems and optimal design , 2005, European Journal of Applied Mathematics.

[3]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[4]  M. Soleimani,et al.  Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data , 2006 .

[5]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[6]  O. Dorn,et al.  Simultaneous Characterization of Geological Shapes and Permeability Distributions in Reservoirs using The Level Set Method , 2006 .

[7]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[8]  M. Burger Levenberg–Marquardt level set methods for inverse obstacle problems , 2004 .

[9]  M. Wang,et al.  Radial basis functions and level set method for structural topology optimization , 2006 .

[10]  Abelardo Ramirez,et al.  Electrical imaging of engineered hydraulic barriers , 2000 .

[11]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[12]  K. Maute,et al.  A parametric level-set approach for topology optimization of flow domains , 2010 .

[13]  Dominique Lesselier,et al.  Reconstruction of thin electromagnetic inclusions by a level-set method , 2009 .

[14]  F. Santosa,et al.  Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set , 1998 .

[15]  Eric L. Miller,et al.  A multiscale, statistically based inversion scheme for linearized inverse scattering problems , 1996, IEEE Trans. Geosci. Remote. Sens..

[16]  Rainer Kress,et al.  On the numerical solution of the three-dimensional inverse obstacle scattering problem , 1992 .

[17]  M. Burger A framework for the construction of level set methods for shape optimization and reconstruction , 2003 .

[18]  K. A. Dines,et al.  Analysis of electrical conductivity imaging , 1981 .

[19]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[20]  Eric L. Miller,et al.  A new shape-based method for object localization and characterization from scattered field data , 2000, IEEE Trans. Geosci. Remote. Sens..

[21]  A. Webb,et al.  Introduction to biomedical imaging , 2002 .

[22]  Andres Alcolea,et al.  Inverse problem in hydrogeology , 2005 .

[23]  David Boas,et al.  Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography. , 2003, Applied optics.

[24]  Virginie Daru,et al.  Level Set Methods and Fast Marching Methods – Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science by J.A. Sethian (Cambridge University Press, Cambridge, UK, 1999, 2nd edition, 378 pp.) £18.95 paperback ISBN 0 521 64557 3 , 2000 .

[25]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[26]  Michael Unser,et al.  Variational B-Spline Level-Set: A Linear Filtering Approach for Fast Deformable Model Evolution , 2009, IEEE Transactions on Image Processing.

[27]  M. E. Davison,et al.  The Ill-Conditioned Nature of the Limited Angle Tomography Problem , 1983 .

[28]  Dominique Lesselier,et al.  Level set techniques for structural inversion in medical imaging , 2007 .

[29]  Eric L. Miller,et al.  Imaging the body with diffuse optical tomography , 2001, IEEE Signal Process. Mag..

[30]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[31]  Eric L. Miller,et al.  A projection-based level-set approach to enhance conductivity anomaly reconstruction in electrical resistance tomography , 2007 .

[32]  C. S. Chen,et al.  A basis function for approximation and the solutions of partial differential equations , 2008 .

[33]  N. Sun Inverse problems in groundwater modeling , 1994 .

[34]  Gerhard Kristensson,et al.  Inverse problems for acoustic waves using the penalised likelihood method , 1986 .

[35]  R. Snieder Inverse Problems in Geophysics , 2001 .

[36]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[37]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[38]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[39]  S. Arridge Optical tomography in medical imaging , 1999 .

[40]  A. Kirsch The domain derivative and two applications in inverse scattering theory , 1993 .

[41]  Alan C. Tripp,et al.  Two-dimensional resistivity inversion , 1984 .

[42]  J. Strzelczyk The Essential Physics of Medical Imaging , 2003 .

[43]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[44]  William Rundell,et al.  Inverse Obstacle Scattering Using Reduced Data , 1998, SIAM J. Appl. Math..

[45]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[46]  Arian Novruzi,et al.  Structure of shape derivatives , 2002 .

[47]  Denis Friboulet,et al.  Compactly Supported Radial Basis Functions Based Collocation Method for Level-Set Evolution in Image Segmentation , 2007, IEEE Transactions on Image Processing.

[48]  William Rundell,et al.  A quasi-Newton method in inverse obstacle scattering , 1994 .

[49]  Eric L. Miller,et al.  Cortical constraint method for diffuse optical brain imaging , 2004, SPIE Optics + Photonics.

[50]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[51]  Irshad R. Mufti,et al.  FINITE‐DIFFERENCE RESISTIVITY MODELING FOR ARBITRARILY SHAPED TWO‐DIMENSIONAL STRUCTURES , 1976 .

[52]  Wendy D. Graham,et al.  Optimal estimation of residual non–aqueous phase liquid saturations using partitioning tracer concentration data , 1997 .

[53]  Alfred K. Louis,et al.  Medical imaging: state of the art and future development , 1992 .

[54]  René Marklein,et al.  Linear and nonlinear inversion algorithms applied in nondestructive evaluation , 2002 .

[55]  Luca Rondi,et al.  Examples of exponential instability for elliptic inverse problems , 2003 .

[56]  K. Kunisch,et al.  Level-set function approach to an inverse interface problem , 2001 .

[57]  S. Y. Wang,et al.  An extended level set method for shape and topology optimization , 2007, J. Comput. Phys..

[58]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods/ J. A. Sethian , 1999 .

[59]  Andreas Kirsch,et al.  Characterization of the shape of a scattering obstacle using the spectral data of the far field operator , 1998 .

[60]  Manuchehr Soleimani,et al.  Computational aspects of low frequency electrical and electromagnetic tomography: A review study , 2008 .

[61]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[62]  Theodoros D. Tsiboukis,et al.  Inverse scattering using the finite-element method and a nonlinear optimization technique , 1999 .

[63]  W. Kalender X-ray computed tomography , 2006, Physics in medicine and biology.

[64]  W. Clem Karl,et al.  A curve evolution approach to object-based tomographic reconstruction , 2003, IEEE Trans. Image Process..

[65]  O. Dorn,et al.  Level set methods for inverse scattering , 2006 .

[66]  David Isaacson,et al.  Electrical Impedance Tomography , 2002, IEEE Trans. Medical Imaging.

[67]  T. Chan,et al.  Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients , 2004 .

[68]  William R B Lionheart,et al.  A MATLAB-based toolkit for three-dimensional Electrical Impedance Tomography: A contribution to the EIDORS project , 2002 .

[69]  E. Haber,et al.  RESINVM3D: A 3D resistivity inversion package , 2007 .

[70]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[71]  T. Chan,et al.  International Journal of C 2004 Institute for Scientific Numerical Analysis and Modeling Computing and Information a Survey on Multiple Level Set Methods with Applications for Identifying Piecewise Constant Functions , 2022 .

[72]  Jie Zhang,et al.  3-D resistivity forward modeling and inversion using conjugate gradients , 1995 .

[73]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[74]  F. Santosa A Level-set Approach Inverse Problems Involving Obstacles , 1995 .

[75]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[76]  E. Miller,et al.  A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets , 2000 .

[77]  Gui-rong Liu,et al.  Computational Inverse Techniques in Nondestructive Evaluation , 2003 .

[78]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[79]  W. Daily,et al.  The effects of noise on Occam's inversion of resistivity tomography data , 1996 .

[80]  Gene H. Golub,et al.  Tikhonov Regularization and Total Least Squares , 1999, SIAM J. Matrix Anal. Appl..

[81]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[82]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[83]  C.R.E. de Oliveira,et al.  Constrained resistivity inversion using seismic data , 2005 .

[84]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[85]  Georgios E. Stavroulakis,et al.  Inverse and Crack Identification Problems in Engineering Mechanics , 2013 .