Robust and minimum norm pole assignment with periodic state feedback

A computational approach is proposed to solve the minimum norm or robust pole assignment problem for linear periodic discrete-time systems. The proposed approach uses a periodic Sylvester-equation-based parametrization of the periodic pole assignment problem and exploits the nonuniqueness of the problem by imposing conditions on the norm of the resulting periodic state feedback or on the condition numbers of the periodic eigenvector matrices of the closed-loop system. The solution method relies on using gradient search methods on suitably defined cost functions. Explicit expressions of the gradients of cost functions are derived, and the efficient evaluation of the cost functions and gradients is discussed. Numerical examples illustrate the effectiveness of the proposed approach.

[1]  S. Bhattacharyya,et al.  Pole assignment via Sylvester's equation , 1982 .

[2]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[3]  M. Kono Eigenvalue assignment in linear periodic discrete-time systems† , 1980 .

[4]  N. Nichols,et al.  Robust pole assignment in linear state feedback , 1985 .

[5]  Paul Van Dooren,et al.  Numerical Linear Algebra Techniques for Systems and Control , 1994 .

[6]  A. Varga Periodic Lyapunov equations: Some applications and new algorithms , 1997 .

[7]  Jorge J. Moré,et al.  User guide for MINPACK-1. [In FORTRAN] , 1980 .

[8]  J. Sreedhar,et al.  Pole Placement via the Periodic Schur Decomposition , 1993, 1993 American Control Conference.

[9]  V. Mehrmann,et al.  AN ANALYSIS OF THE POLE PLACEMENT PROBLEM II. THE MULTI-INPUT CASE∗ , 1997 .

[10]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[11]  Jorge J. Moré,et al.  User Guide for Minpack-1 , 1980 .

[12]  S. Longhi,et al.  A note on robust pole assignment for periodic systems , 1996, IEEE Trans. Autom. Control..

[13]  Adam W. Bojanczyk,et al.  Periodic Schur decomposition: algorithms and applications , 1992, Optics & Photonics.

[14]  Noah H. Rhee,et al.  Cyclic Schur and Hessenberg-Schur Numerical Methods for Solving Periodic Lyapunov and Sylvester Equa , 1995 .

[15]  O. Grasselli,et al.  Pole placement for nonreachable periodic discrete-time systems , 1991 .

[16]  S. Pieters,et al.  A computational approach for optimal periodic output feedback control , 1996, Proceedings of Joint Conference on Control Applications Intelligent Control and Computer Aided Control System Design.

[17]  A. Varga Parametric methods for pole assignment , 1997, 1997 European Control Conference (ECC).

[18]  A. Varga On minimum norm pole assignment with periodic state feedback , 1997 .

[19]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.