Paired pulse depression in the somatosensory cortex: Associations between MEG and BOLD fMRI

[1]  Paul L. Furlong,et al.  The Role of Gabaergic Modulation in Motor Function Related Neuronal Network Activity the Role of Gabaergic Modulation in Motor Function Related Neuronal Network Activity , 2022 .

[2]  Timothy P. L. Roberts,et al.  Relating MEG measured motor cortical oscillations to resting γ-Aminobutyric acid (GABA) concentration , 2011, NeuroImage.

[3]  P. Morris,et al.  β‐Band correlates of the fMRI BOLD response , 2011, Human brain mapping.

[4]  Lin Yang,et al.  Linear and nonlinear relationships between visual stimuli, EEG and BOLD fMRI signals , 2010, NeuroImage.

[5]  Marine Fouquet,et al.  A Simple Way to Improve Anatomical Mapping of Functional Brain Imaging , 2010, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[6]  G. Barnes,et al.  Neuronal network pharmacodynamics of GABAergic modulation in the human cortex determined using pharmaco‐magnetoencephalography , 2009, Human brain mapping.

[7]  F. Wang,et al.  Role of beta band oscillations in somatosensory cortex using MEG , 2009, NeuroImage.

[8]  Derek K. Jones,et al.  Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans , 2009, Proceedings of the National Academy of Sciences.

[9]  B. R. Sastry,et al.  The involvement of GABA-C receptors in paired-pulse depression of inhibitory postsynaptic currents in rat hippocampal CA1 pyramidal neurons , 2009, Experimental Neurology.

[10]  Wei Chen,et al.  Investigating the source of BOLD nonlinearity in human visual cortex in response to paired visual stimuli , 2008, NeuroImage.

[11]  I. Stanford,et al.  Pharmacologically induced and stimulus evoked rhythmic neuronal oscillatory activity in the primary motor cortex in vitro , 2008, Neuroscience.

[12]  R. Bowtell,et al.  Volume parcellation for improved dynamic shimming , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[13]  F. Carver,et al.  Complex relationship between BOLD signal and synchronization/desynchronization of human brain MEG oscillations , 2007, Human brain mapping.

[14]  T. Yoshimoto,et al.  Recent Advances in Biomagnetism , 2007 .

[15]  Miles A Whittington,et al.  A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex , 2006, Proceedings of the National Academy of Sciences.

[16]  Leena Lauronen,et al.  Spatial dynamics of population activities at S1 after median and ulnar nerve stimulation revisited: An MEG study , 2006, NeuroImage.

[17]  Michael T. Jurkiewicz,et al.  Post-movement beta rebound is generated in motor cortex: Evidence from neuromagnetic recordings , 2006, NeuroImage.

[18]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[19]  I. Rektor,et al.  Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task. , 2006, Progress in brain research.

[20]  Mikko Pohja,et al.  On the human sensorimotor-cortex beta rhythm: Sources and modeling , 2005, NeuroImage.

[21]  Matthew J. Brookes,et al.  GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex , 2005, NeuroImage.

[22]  Claudio Babiloni,et al.  Temporal dynamics of alpha and beta rhythms in human SI and SII after galvanic median nerve stimulation. A MEG study , 2004, NeuroImage.

[23]  K. D. Singh,et al.  Co-registration of magnetoencephalography with magnetic resonance imaging using bite-bar-based fiducials and surface-matching , 2004, Clinical Neurophysiology.

[24]  Riitta Salmelin,et al.  Comparison of BOLD fMRI and MEG characteristics to vibrotactile stimulation , 2003, NeuroImage.

[25]  A. Grinvald,et al.  Imaging Spatiotemporal Dynamics of Surround Inhibition in the Barrels Somatosensory Cortex , 2003, The Journal of Neuroscience.

[26]  Y. Hamada,et al.  The profile of the recovery cycle in human primary and secondary somatosensory cortex: a magnetoencephalography study , 2002, Clinical Neurophysiology.

[27]  Adrian L. Williams,et al.  Task-Related Changes in Cortical Synchronization Are Spatially Coincident with the Hemodynamic Response , 2002, NeuroImage.

[28]  G Pfurtscheller,et al.  Contrasting behavior of beta event-related synchronization and somatosensory evoked potential after median nerve stimulation during finger manipulation in man , 2002, Neuroscience Letters.

[29]  G. Pfurtscheller,et al.  Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[30]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[31]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[32]  Klaus Linkenkaer-Hansen,et al.  Dynamics of mu-rhythm suppression caused by median nerve stimulation: a magnetoencephalographic study in human subjects , 2000, Neuroscience Letters.

[33]  P. Derambure,et al.  Brief and sustained movements: differences in event-related (de)synchronization (ERD/ERS) patterns , 2000, Clinical Neurophysiology.

[34]  W. Backes,et al.  Somatosensory cortex responses to median nerve stimulation: fMRI effects of current amplitude and selective attention , 2000, Clinical Neurophysiology.

[35]  D. Auer,et al.  Frequency dependence of the functional MRI response after electrical median nerve stimulation , 2000, Human brain mapping.

[36]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[37]  R. Hari,et al.  Magnetoencephalography in the study of human somatosensory cortical processing. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  U Salvolini,et al.  Localization of the first and second somatosensory areas in the human cerebral cortex with functional MR imaging. , 1999, AJNR. American journal of neuroradiology.

[39]  Juha Virtanen,et al.  Activation of multiple cortical areas in response to somatosensory stimulation: Combined magnetoencephalographic and functional magnetic resonance imaging , 1999, Human brain mapping.

[40]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. , 1998, Brain : a journal of neurology.

[41]  K. Uğurbil,et al.  Experimental determination of the BOLD field strength dependence in vessels and tissue , 1997, Magnetic resonance in medicine.

[42]  V. Jousmäki,et al.  Modulation of Human Cortical Rolandic Rhythms during Natural Sensorimotor Tasks , 1997, NeuroImage.

[43]  K D Singh,et al.  Evaluation of MRI-MEG/EEG co-registration strategies using Monte Carlo simulation. , 1997, Electroencephalography and clinical neurophysiology.

[44]  R. Ilmoniemi,et al.  Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. , 1996, Electroencephalography and clinical neurophysiology.

[45]  H Burton,et al.  Functional MRI in human somatosensory cortex activated by touching textured surfaces , 1996, Journal of magnetic resonance imaging : JMRI.

[46]  M. Jüptner,et al.  Review: Does Measurement of Regional Cerebral Blood Flow Reflect Synaptic Activity?—Implications for PET and fMRI , 1995, NeuroImage.

[47]  Jens Frahm,et al.  High‐resolution functional magnetic resonance imaging of cortical activation during tactile exploration , 1995 .

[48]  R. Hari,et al.  Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement , 1994, Neuroscience.

[49]  R. Hari,et al.  Cortical reactivity in progressive myoclonus epilepsy. , 1994, Electroencephalography and clinical neurophysiology.

[50]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[51]  A. A. Fife,et al.  Whole cortex, 64 channel SQUID biomagnetometer system , 1993, IEEE Transactions on Applied Superconductivity.

[52]  M Hämäläinen,et al.  Early deflections of cerebral magnetic responses to median nerve stimulation. , 1989, Electroencephalography and clinical neurophysiology.

[53]  D. Prince,et al.  Frequency‐dependent depression of inhibition in guinea‐pig neocortex in vitro by GABAB receptor feed‐back on GABA release. , 1989, The Journal of physiology.

[54]  B H Gähwiler,et al.  Activity-dependent disinhibition. III. Desensitization and GABAB receptor-mediated presynaptic inhibition in the hippocampus in vitro. , 1989, Journal of neurophysiology.

[55]  G L Romani,et al.  Neuromagnetic characterization of the cortical response to median nerve stimulation in the steady state paradigm. , 1987, The International journal of neuroscience.

[56]  C. Woolsey,et al.  Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. , 1979, Journal of neurosurgery.

[57]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[58]  M. Annett A classification of hand preference by association analysis. , 1970, British journal of psychology.

[59]  G. Backus,et al.  Uniqueness in the inversion of inaccurate gross Earth data , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[60]  H. Jasper,et al.  Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus , 1949 .