Modeling laser-induced incandescence of soot: a summary and comparison of LII models

[1]  S. Will,et al.  On heat conduction between laser-heated nanoparticles and a surrounding gas , 2006 .

[2]  Paul Roth,et al.  Two-color time-resolved LII applied to soot particle sizing in the cylinder of a Diesel engine , 2006 .

[3]  D. Greenhalgh,et al.  Laser induced incandescence under high vacuum conditions , 2006 .

[4]  Stefan Will,et al.  Laser-induced incandescence: recent trends and current questions , 2006 .

[5]  C. Mounaïm-Rousselle,et al.  Soot volume fractions and primary particle size estimate by means of the simultaneous two-color-time-resolved and 2D laser-induced incandescence , 2006 .

[6]  Fengshan Liu,et al.  Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence , 2006 .

[7]  Fengshan Liu,et al.  Influence of polydisperse distributions of both primary particle and aggregate size on soot temperature in low-fluence LII , 2006 .

[8]  Marshall B. Long,et al.  Soot formation in laminar diffusion flames , 2005 .

[9]  M. Aigner,et al.  Comparison of laser-induced incandescence method with scanning mobility particle sizer technique: the influence of probe sampling and laser heating on soot particle size distribution , 2005 .

[10]  E. Therssen,et al.  Two-color laser-induced incandescence and cavity ring-down spectroscopy for sensitive and quantitative imaging of soot and PAHs in flames , 2004 .

[11]  Cyril Crua,et al.  Laser-induced incandescence study of diesel soot formation in a rapid compression machine at elevated pressures , 2003 .

[12]  H. Bockhorn,et al.  Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures. , 2003, Chemosphere.

[13]  H. Bockhorn,et al.  Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements. , 2003, Applied optics.

[14]  H. Michelsen Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles , 2003 .

[15]  D. Brüggemann,et al.  Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames , 2002 .

[16]  C. Allouis,et al.  A possible radiative model for micronic carbonaceous particle sizing based on time-resolved laser-induced incandescence , 2002 .

[17]  Ömer L. Gülder,et al.  Clouds over Soot Evaporation: Errors in Modeling Laser-Induced Incandescence of Soot , 2001 .

[18]  D. L. Urban,et al.  Extinction and Scattering Properties of Soot Emitted from Buoyant Turbulent Diffusion Flames. Appendix D , 2001 .

[19]  Laurence E. Fried,et al.  Explicit Gibbs free energy equation of state applied to the carbon phase diagram , 2000 .

[20]  Stephan Schraml,et al.  Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII) , 2000 .

[21]  A. Leipertz,et al.  Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence. , 1998, Applied optics.

[22]  Ümit Özgür Köylü Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames : Implications for soot surface growth and total emissivity , 1997 .

[23]  H. Kuze,et al.  Rotationally excited NO molecules incident on a graphite surface: molecular rotation and translation after scattering , 1997 .

[24]  J. Perrin,et al.  Thermal accommodation of a gas on a surface and heat transfer in CVD and PECVD experiments , 1997 .

[25]  J. Seitzman,et al.  Soot volume fraction and particle size measurements with laser-induced incandescence. , 1997, Applied optics.

[26]  C. Shaddix,et al.  Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames , 1996 .

[27]  Christopher R. Shaddix,et al.  The elusive history of m∼= 1.57 – 0.56i for the refractive index of soot , 1996 .

[28]  G. M. Faeth,et al.  Spectral extinction coefficients of soot aggregates from turbulent diffusion flames , 1996 .

[29]  A. Leipertz,et al.  Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence. , 1995, Optics letters.

[30]  R. Santoro,et al.  Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence. , 1995, Applied optics.

[31]  D. Dietrich,et al.  Laser-induced incandescence applied to droplet combustion. , 1995, Applied optics.

[32]  K. J. Weiland,et al.  Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction , 1994 .

[33]  N. Tait,et al.  PLIF imaging of fuel fraction in practical devices and LII imaging of soot , 1993 .

[34]  F. Rigby,et al.  Thermal-Induced Vaporization of Organic Materials , 1991 .

[35]  Hsueh-Chia Chang,et al.  Determination of the wavelength dependence of refractive indices of flame soot , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[36]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[37]  L. Melton,et al.  Soot diagnostics based on laser heating. , 1984, Applied optics.

[38]  C. Dasch Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame. , 1984, Applied optics.

[39]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[40]  Alan C. Eckbreth,et al.  Effects of laser-modulated particulate incandescence on Raman scattering diagnostics , 1977 .

[41]  J. Rosenfeld,et al.  The formation and coagulation of soot aerosols generated by the pyrolysis of aromatic hydrocarbons , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[42]  W. Duley,et al.  Aerosol‐particle sizes from light emission during excitation by TEA CO2 laser pulses , 1974 .

[43]  C. Y. Cha,et al.  Transport phenomena in the rarefied gas transition regime , 1974 .

[44]  D. Young,et al.  Thermodynamic properties of carbon up to the critical point , 1973 .

[45]  A. F. Sarofim,et al.  Optical Constants of Soot and Their Application to Heat-Flux Calculations , 1969 .

[46]  K. Tamm Landolt‐Börnstein: Zahlenwerte und Funktionen aus Naturwissenschaft und Technik. Gruppe II: Atom‐ und Molekularphysik. Bd. 5: Molekularakustik. Von W. Schaaffs, Herausgeber: K.‐H. Hellwege und A. M. Hellwege. Springer‐Verlag, Berlin‐Heidelberg‐New York 1967. 286 Seiten. Preis: DM 156.– , 1968 .

[47]  D. B. Spalding,et al.  Heat, Mass and Momentum Transfer. W. M. Rohsenow and H. Y. Choi. Prentice-Hall, London. 1961. Hipp. Diagrams. 70s. , 1962, The Journal of the Royal Aeronautical Society.

[48]  L. Brewer,et al.  THE IMPORTANCE OF COMPLEX GASEOUS MOLECULES IN HIGH TEMPERATURE SYSTEMS , 1955 .

[49]  C. Kittel Introduction to solid state physics , 1954 .

[50]  P. Roth,et al.  Comparison of LII and TEM sizing during synthesis of iron particle chains , 2005 .

[51]  H. Bladh,et al.  Characteristics of laser-induced incandescence from soot in studies of a time-dependent heat- and mass-transfer model , 2004 .

[52]  Ömer L. Gülder,et al.  Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame , 2004 .

[53]  Paul Roth,et al.  In-cylinder sizing of diesel particles by time-resolved laser-induced incandescence (TR-LII) , 2002 .

[54]  D. E. Rosner,et al.  Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime , 2000 .

[55]  P. Roth,et al.  In-situ characterization of ultrafine particles by laser-induced incandescence , 1999 .

[56]  P. Roth,et al.  In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission , 1996 .

[57]  H. Bockhorn,et al.  Assessment of soot volume fractions from laser-induced incancescence by comparison with extinction measurements in laminar, premixed, flat flames , 1996 .

[58]  Gaylon S. Campbell,et al.  Heat, Mass, and Momentum Transfer , 1977 .

[59]  E. Eckert,et al.  Analysis of heat and mass transfer , 1971 .