Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material

[1]  L. Pruitt,et al.  Fluorocarbon Polymers in Biomedical Engineering , 2014 .

[2]  M. M. Islam,et al.  The artificial cornea. , 2013, Methods in molecular biology.

[3]  Aldo R Boccaccini,et al.  A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. , 2011, Biomaterials.

[4]  Eveliina Munukka,et al.  Antibacterial effects and dissolution behavior of six bioactive glasses. , 2009, Journal of biomedical materials research. Part A.

[5]  J. Ciolino,et al.  Biologic Keratoprosthesis Materials , 2009, International ophthalmology clinics.

[6]  M. Hupa,et al.  Predicting physical and chemical properties of bioactive glasses from chemical composition. Part 3: In vitro reactivity , 2009 .

[7]  B. Tighe,et al.  Towards a synthetic osteo-odonto-keratoprosthesis. , 2009, Acta biomaterialia.

[8]  T. Taguchi,et al.  Collagen-immobilized poly(vinyl alcohol) as an artificial cornea scaffold that supports a stratified corneal epithelium. , 2006, Journal of biomedical materials research. Part B, Applied biomaterials.

[9]  W. Wee,et al.  Seoul-type keratoprosthesis: preliminary results of the first 7 human cases. , 2002, Archives of ophthalmology.

[10]  T V Chirila,et al.  An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. , 2001, Biomaterials.

[11]  B. Kirchhof,et al.  Aachen keratoprosthesis as temporary implant for combined vitreoretinal surgery and keratoplasty: report on 10 clinical applications , 2000, Graefe's Archive for Clinical and Experimental Ophthalmology.

[12]  H. Aro,et al.  Porous bone implants , 2000 .

[13]  H. J. Griesser,et al.  Effects of biologically modified surfaces of synthetic lenticules on corneal epithelialization in vivo. , 1997, Australian and New Zealand journal of ophthalmology.

[14]  R P Happonen,et al.  Titanium and bioactive glass-ceramic coated titanium as materials for keratoprosthesis. , 1996, Experimental eye research.

[15]  M. Savoldelli,et al.  Incorporation of a fluorocarbon polymer implanted at the posterior surface of the rabbit cornea. , 1996, Journal of biomedical materials research.

[16]  M. van Andel,et al.  Autoclavable highly cross-linked polyurethane networks in ophthalmology. , 1993, Biomaterials.

[17]  N. Sundarraj,et al.  Corneal epithelial cell attachment with endogenous laminin and fibronectin. , 1993, Investigative ophthalmology & visual science.

[18]  C. Della Rocca,et al.  Strampelli's osteo-odonto-keratoprosthesis. Clinical and histological long-term features of three prostheses. , 1992, British Journal of Ophthalmology.

[19]  R. Banwatt,et al.  In vivo fibroplasia of a porous polymer in the cornea. , 1991, Investigative ophthalmology & visual science.

[20]  Y. Ikada,et al.  Corneal cell adhesion and proliferation on hydrogel sheets bound with cell-adhesive proteins. , 1991, Current eye research.

[21]  A. Hoffman,et al.  Quantitation of rabbit corneal epithelial cell outgrowth on polymeric substrates in vitro. , 1990, Investigative ophthalmology & visual science.

[22]  V. Trinkaus-Randall,et al.  In vitro evaluation of fibroplasia in a porous polymer. , 1990, Investigative ophthalmology & visual science.

[23]  C. Fanizza,et al.  Light and scanning electron microscopy evaluation of the Dacron felt as the haptic part of an improved keratoprosthesis. An in vitro and in vivo study , 1988 .

[24]  V. Marchi,et al.  [Osteo-odonto-keratoprosthesis]. , 1970, Annali di ottalmologia e clinica oculistica.