Too cool to work

Magnetocaloric and electrocaloric effects are driven by doing work, but this work has barely been explored, even though these caloric effects are being exploited in a growing number of prototype cooling devices.

[1]  Qi Zhang,et al.  Investigation of the electrocaloric effect in a PbMg2/3Nb1/3O3-PbTiO3 relaxor thin film , 2009 .

[2]  X. Moya,et al.  Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In , 2007, 0704.1243.

[3]  K. Gschneidner,et al.  MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .

[4]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[5]  Xavier Moya,et al.  The Electrocaloric Efficiency of Ceramic and Polymer Films , 2013, Advanced materials.

[6]  L. Mañosa,et al.  Elastocaloric effect associated with the martensitic transition in shape-memory alloys. , 2008, Physical review letters.

[7]  Junhao Chu,et al.  Huge electrocaloric effect in Langmuir–Blodgett ferroelectric polymer thin films , 2010 .

[8]  S. Fujieda,et al.  Itinerant-electron Metamagnetic Transition and Large Magnetocaloric Effects in La(FexSi1-x)13 Compounds and Their Hydrides , 2003 .

[9]  Qiming Zhang,et al.  Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.

[10]  V. Heine The thermodynamics of bodies in static electromagnetic fields , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  F. Hu,et al.  Large magnetic entropy change in a Heusler alloy Ni 52.6 Mn 23.1 Ga 24.3 single crystal , 2001 .

[12]  F. Bateman,et al.  Giant electrocaloric effect in ferroelectric poly(vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition , 2012 .

[13]  Qiming Zhang,et al.  Large Electrocaloric Effect in a Dielectric Liquid Possessing a Large Dielectric Anisotropy Near the Isotropic–Nematic Transition , 2013 .

[14]  M. Wuttig,et al.  Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires , 2012 .

[15]  N. D. Mathur,et al.  Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 , 2005, Science.

[16]  X. Moya,et al.  Caloric materials near ferroic phase transitions. , 2014, Nature materials.

[17]  Lingwei Li,et al.  Magnetocaloric Effect of Fe(Rh1−xPdx) Alloys , 2008 .

[18]  Xavier Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[19]  A. Poredos,et al.  Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device , 2015 .

[20]  G. D. de Wijs,et al.  Mixed Magnetism for Refrigeration and Energy Conversion , 2011, 1203.0556.

[21]  T. Fukuda,et al.  Significant elastocaloric effect in a Fe-31.2Pd (at. %) single crystal , 2013 .

[22]  Qi Zhang,et al.  A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3 Thin Film at Room Temperature , 2013 .

[23]  Oliver Gutfleisch,et al.  Giant magnetocaloric effect driven by structural transitions. , 2012, Nature materials.