Integrative Approaches for Inference of Genome-Scale Gene Regulatory Networks.

Transcriptional regulatory networks specify the regulatory proteins of target genes that control the context-specific expression levels of genes. With our ability to profile the different types of molecular components of cells under different conditions, we are now uniquely positioned to infer regulatory networks in diverse biological contexts such as different cell types, tissues, and time points. In this chapter, we cover two main classes of computational methods to integrate different types of information to infer genome-scale transcriptional regulatory networks. The first class of methods focuses on integrative methods for specifically inferring connections between transcription factors and target genes by combining gene expression data with regulatory edge-specific knowledge. The second class of methods integrates upstream signaling networks with transcriptional regulatory networks by combining gene expression data with protein-protein interaction networks and proteomic datasets. We conclude with a section on practical applications of a network inference algorithm to infer a genome-scale regulatory network.

[1]  Aviv Regev,et al.  Comparative analysis of gene regulatory networks: from network reconstruction to evolution. , 2015, Annual review of cell and developmental biology.

[2]  R. Young,et al.  Transcriptional Regulation and Its Misregulation in Disease , 2013, Cell.

[3]  AnHai Doan,et al.  MetaSRA: normalized human sample-specific metadata for the Sequence Read Archive , 2017, Bioinform..

[4]  Adriano V. Werhli,et al.  Reverse Engineering Gene Regulatory Networks with Various Machine Learning Methods , 2008 .

[5]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[6]  John D. Storey,et al.  Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis , 2007, PLoS genetics.

[7]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[8]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[9]  David M. Simcha,et al.  Tackling the widespread and critical impact of batch effects in high-throughput data , 2010, Nature Reviews Genetics.

[10]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[11]  Damian Szklarczyk,et al.  STRING v9.1: protein-protein interaction networks, with increased coverage and integration , 2012, Nucleic Acids Res..

[12]  David J. Arenillas,et al.  JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles , 2015, Nucleic Acids Res..

[13]  David Maxwell Chickering,et al.  Dependency Networks for Inference, Collaborative Filtering, and Data Visualization , 2000, J. Mach. Learn. Res..

[14]  Roded Sharan,et al.  Optimally Orienting Physical Networks , 2011, RECOMB.

[15]  Samantha A. Morris,et al.  CellNet: Network Biology Applied to Stem Cell Engineering , 2014, Cell.

[16]  Alireza F. Siahpirani,et al.  A prior-based integrative framework for functional transcriptional regulatory network inference , 2016, Nucleic acids research.

[17]  T. Furey ChIP – seq and beyond : new and improved methodologies to detect and characterize protein – DNA interactions , 2012 .

[18]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[19]  Aviv Regev,et al.  Transcriptional Regulatory Circuits: Predicting Numbers from Alphabets , 2009, Science.

[20]  Terence P. Speed,et al.  Bayesian Inference of Signaling Network Topology in a Cancer Cell Line , 2012, Bioinform..

[21]  Roded Sharan,et al.  ANAT 2.0: reconstructing functional protein subnetworks , 2017, BMC Bioinformatics.

[22]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[23]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[24]  Mark Craven,et al.  Inferring Host Gene Subnetworks Involved in Viral Replication , 2014, PLoS Comput. Biol..

[25]  Ziv Bar-Joseph,et al.  DREM 2.0: Improved reconstruction of dynamic regulatory networks from time-series expression data , 2012, BMC Systems Biology.

[26]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[27]  Ty C. Voss,et al.  Dynamic regulation of transcriptional states by chromatin and transcription factors , 2013, Nature Reviews Genetics.

[28]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[29]  N. Meinshausen,et al.  Stability selection , 2008, 0809.2932.

[30]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[31]  D. Figeys Mapping the human protein interactome , 2008, Cell Research.

[32]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[33]  Z. Bar-Joseph,et al.  Linking the signaling cascades and dynamic regulatory networks controlling stress responses , 2013, Genome research.

[34]  David B. Berry,et al.  Pathway connectivity and signaling coordination in the yeast stress-activated signaling network , 2014, Molecular systems biology.

[35]  E. Gusmão,et al.  Analysis of computational footprinting methods for DNase sequencing experiments , 2016, Nature Methods.

[36]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[37]  Jeffrey T Leek,et al.  Reproducible RNA-seq analysis using recount2 , 2017, Nature Biotechnology.

[38]  Deborah Chasman,et al.  Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens , 2016, PLoS Comput. Biol..

[39]  Kathleen Marchal,et al.  Module networks revisited: computational assessment and prioritization of model predictions , 2009, Bioinform..

[40]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[41]  Ziv Bar-Joseph,et al.  Identifying proteins controlling key disease signaling pathways , 2013, Bioinform..

[42]  Yoshua Bengio,et al.  Input-output HMMs for sequence processing , 1996, IEEE Trans. Neural Networks.

[43]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[44]  Anna Ritz,et al.  Pathways on demand: automated reconstruction of human signaling networks , 2016, npj Systems Biology and Applications.

[45]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[46]  G. Crawford,et al.  DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. , 2010, Cold Spring Harbor protocols.

[47]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[48]  Deborah Chasman,et al.  Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response , 2017, bioRxiv.

[49]  James A. Thomson,et al.  Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks , 2013, PLoS Comput. Biol..

[50]  I. Simon,et al.  Reconstructing dynamic regulatory maps , 2007, Molecular systems biology.

[51]  Nir Friedman,et al.  Physical Module Networks: an integrative approach for reconstructing transcription regulation , 2011, Bioinform..

[52]  Zonghao Gu,et al.  Generating Multiple Solutions for Mixed Integer Programming Problems , 2007, IPCO.

[53]  Riet De Smet,et al.  Advantages and limitations of current network inference methods , 2010, Nature Reviews Microbiology.

[54]  Ge Gao,et al.  PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants , 2016, Nucleic Acids Res..

[55]  P. Braun Interactome mapping for analysis of complex phenotypes: Insights from benchmarking binary interaction assays , 2012, Proteomics.

[56]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[57]  D. Husmeier,et al.  Reconstructing Gene Regulatory Networks with Bayesian Networks by Combining Expression Data with Multiple Sources of Prior Knowledge , 2007, Statistical applications in genetics and molecular biology.

[58]  Giorgio Colombo,et al.  High Affinity vs. Native Fibronectin in the Modulation of αvβ3 Integrin Conformational Dynamics: Insights from Computational Analyses and Implications for Molecular Design , 2017, PLoS Comput. Biol..

[59]  Ernest Fraenkel,et al.  Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package , 2016, PLoS Comput. Biol..

[60]  Roded Sharan,et al.  SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments , 2007, ISMB/ECCB.

[61]  David A. Drubin,et al.  Learning a Prior on Regulatory Potential from eQTL Data , 2009, PLoS genetics.

[62]  Sui Huang,et al.  Complex Gene Regulatory Networks - from Structure to Biological Observables: Cell Fate Determination , 2009, Encyclopedia of Complexity and Systems Science.

[63]  Anupam Gupta,et al.  Discovering pathways by orienting edges in protein interaction networks , 2010, Nucleic acids research.

[64]  William Stafford Noble,et al.  How does multiple testing correction work? , 2009, Nature Biotechnology.

[65]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[66]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[67]  Richard Bonneau,et al.  Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks , 2013, Bioinform..

[68]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[69]  Amos Tanay,et al.  Minreg: Inferring an active regulator set , 2002, ISMB.

[70]  Jean-Philippe Vert,et al.  TIGRESS: Trustful Inference of Gene REgulation using Stability Selection , 2012, BMC Systems Biology.

[71]  Tso-Jung Yen,et al.  Discussion on "Stability Selection" by Meinshausen and Buhlmann , 2010 .

[72]  Hideaki Sugawara,et al.  The Sequence Read Archive , 2010, Nucleic Acids Res..

[73]  Anne E Carpenter,et al.  Systematic genome-wide screens of gene function , 2004, Nature Reviews Genetics.

[74]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[75]  Corey Nislow,et al.  The Yeast Deletion Collection: A Decade of Functional Genomics , 2014, Genetics.

[76]  Nir Friedman,et al.  Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm , 1999, UAI.

[77]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[78]  Ali Shojaie,et al.  Selection and estimation for mixed graphical models. , 2013, Biometrika.

[79]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[80]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[81]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[82]  Tom Michoel,et al.  Integrative Multi-omics Module Network Inference with Lemon-Tree , 2014, PLoS Comput. Biol..

[83]  Tamer Kahveci,et al.  Accessed Terms of Use , 2022 .

[84]  Rainer Spang,et al.  Inferring cellular networks – a review , 2007, BMC Bioinformatics.

[85]  Ariel S. Schwartz,et al.  An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man , 2010, Cell.

[86]  Denis Torre,et al.  Massive Mining of Publicly Available RNA-seq Data from Human and Mouse , 2017 .

[87]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[88]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[89]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[90]  Marinka Zitnik,et al.  Gene network inference by fusing data from diverse distributions , 2015, Bioinform..

[91]  Limsoon Wong,et al.  Why Batch Effects Matter in Omics Data, and How to Avoid Them. , 2017, Trends in biotechnology.