Correction: Genomic Comparison of Non-Typhoidal Salmonella enterica Serovars Typhimurium, Enteritidis, Heidelberg, Hadar and Kentucky Isolates from Broiler Chickens

1 Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada, 2 Pacific Agri-Food Research Center, Agriculture and Agri-Food Canada (AAFC), Agassiz, British Columbia, V0M 1A0, Canada, 3 McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, H3A 1A4, Canada, 4 Lady Davis Institute for Medical Research, Montréal, Québec, H3T 1E2, Canada, 5 Southern Crop Protection and Food Research Centre, AAFC, London, Ontario, N5V 4T3, Canada

[1]  A. A. Fadl,et al.  Role of StdA in adhesion of Salmonella enterica serovar Enteritidis phage type 8 to host intestinal epithelial cells , 2013, Gut Pathogens.

[2]  G. Horsman,et al.  Ciprofloxacin-Resistant Salmonella enterica Serovar Kentucky in Canada , 2013, Emerging infectious diseases.

[3]  D. Holden,et al.  Identification of Salmonella Pathogenicity Island-2 Type III Secretion System Effectors Involved in Intramacrophage Replication of S. enterica Serovar Typhimurium: Implications for Rational Vaccine Design , 2013, mBio.

[4]  F. Ramos-Morales Impact of Salmonella enterica Type III Secretion System Effectors on the Eukaryotic Host Cell , 2012 .

[5]  Zixin Deng,et al.  SecReT4: a web-based bacterial type IV secretion system resource , 2012, Nucleic Acids Res..

[6]  R. Beiko,et al.  Comparative Genomic and Phylogenetic Approaches to Characterize the Role of Genetic Recombination in Mycobacterial Evolution , 2012, PloS one.

[7]  L. Masson,et al.  Characterization of antimicrobial resistance and virulence genotypes of Enterococcus faecalis recovered from a pork processing plant. , 2012, Journal of food protection.

[8]  Qing Zhang,et al.  T3DB: an integrated database for bacterial type III secretion system , 2012, BMC Bioinformatics.

[9]  M. Bonalli,et al.  Salmonella enterica serotype Kentucky associated with human infections in Switzerland: Genotype and resistance trends 2004–2009 , 2012 .

[10]  K. Severinov,et al.  Microcin C: biosynthesis and mechanisms of bacterial resistance. , 2012, Future Microbiology.

[11]  K. Dewar,et al.  Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken. , 2012, Poultry science.

[12]  K. Desanto,et al.  Public Health Agency of Canada , 2011 .

[13]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010, Bioinform..

[14]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[15]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[16]  T. Cebula,et al.  Antimicrobial Resistance-Conferring Plasmids with Similarity to Virulence Plasmids from Avian Pathogenic Escherichia coli Strains in Salmonella enterica Serovar Kentucky Isolates from Poultry , 2009, Applied and Environmental Microbiology.

[17]  S. Le Gall,et al.  Distribution of mutation frequencies among Salmonella enterica isolates from animal and human sources and genetic characterization of a Salmonella Heidelberg hypermutator. , 2009, Veterinary microbiology.

[18]  K. Kniel,et al.  Comparison of genetic and physiological properties of Salmonella enterica isolates from chickens reveals one major difference between serovar Kentucky and other serovars: response to acid. , 2009, Foodborne pathogens and disease.

[19]  P. Lopez,et al.  Molecular phylogeny: reconstructing the forest. , 2009, Comptes rendus biologies.

[20]  Georgios S. Vernikos,et al.  Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. , 2008, Genome research.

[21]  B. Malorny,et al.  Multi-locus variable-number tandem repeat analysis for outbreak studies of Salmonella enterica serotype Enteritidis , 2008, BMC Microbiology.

[22]  Jay P. Graham,et al.  Industrial food animal production, antimicrobial resistance, and human health. , 2008, Annual review of public health.

[23]  Rick L. Stevens,et al.  The RAST Server: Rapid Annotations using Subsystems Technology , 2008, BMC Genomics.

[24]  M. Hensel,et al.  The yejABEF operon of Salmonella confers resistance to antimicrobial peptides and contributes to its virulence. , 2008, Microbiology.

[25]  E. Topp,et al.  Antibiotic resistance and virulence genes in commensal Escherichia coli and Salmonella isolates from commercial broiler chicken farms. , 2007, Journal of food protection.

[26]  M. Wiedmann,et al.  Antimicrobial resistance in nontyphoidal Salmonella. , 2007, Journal of food protection.

[27]  Adam Zemla,et al.  MvirDB—a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications , 2006, Nucleic Acids Res..

[28]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[29]  H. Andrews-Polymenis,et al.  SipA, SopA, SopB, SopD, and SopE2 Contribute to Salmonella enterica Serotype Typhimurium Invasion of Epithelial Cells , 2005, Infection and Immunity.

[30]  Jun Yu,et al.  VFDB: a reference database for bacterial virulence factors , 2004, Nucleic Acids Res..

[31]  J. Galán,et al.  InvBIs a Type III Secretion-Associated Chaperone for theSalmonella enterica Effector ProteinSopE , 2003, Journal of bacteriology.

[32]  J. Blázquez,et al.  Hypermutation as a factor contributing to the acquisition of antimicrobial resistance. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[33]  C. Southward,et al.  Genomic Profiling of Iron-Responsive Genes in Salmonella enterica Serovar Typhimurium by High-Throughput Screening of a Random Promoter Library , 2003, Journal of bacteriology.

[34]  F. Haesebrouck,et al.  Antimicrobial Growth Promoters Used in Animal Feed: Effects of Less Well Known Antibiotics on Gram-Positive Bacteria , 2003, Clinical Microbiology Reviews.

[35]  W. Hardt,et al.  The Salmonella enterica Serotype Typhimurium Effector Proteins SipA, SopA, SopB, SopD, and SopE2 Act in Concert To Induce Diarrhea in Calves , 2002, Infection and Immunity.

[36]  R. Kingsley,et al.  Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin‐binding protein that is expressed in the intestine , 2002, Molecular microbiology.

[37]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[38]  P. Hsieh,et al.  Molecular mechanisms of DNA mismatch repair. , 2001, Mutation research.

[39]  M. Hensel,et al.  Salmonella pathogenicity islands encoding type III secretion systems. , 2001, Microbes and infection.

[40]  B. Swaminathan,et al.  PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. , 2001, Emerging infectious diseases.

[41]  W. Rabsch,et al.  Non-typhoidal salmonellosis: emerging problems. , 2001, Microbes and infection.

[42]  N. Bean,et al.  The changing epidemiology of salmonella: trends in serotypes isolated from humans in the United States, 1987-1997. , 2001, The Journal of infectious diseases.

[43]  T. Whittam,et al.  Gene Conservation and Loss in themutS-rpoS Genomic Region of PathogenicEscherichia coli , 2000, Journal of bacteriology.

[44]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[45]  J. Slauch,et al.  The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium , 2000, Molecular microbiology.

[46]  P. Barrow,et al.  Vaccination for control of Salmonella in poultry. , 1999, Vaccine.

[47]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  W. Rabsch,et al.  Ferrioxamine-Mediated Iron(III) Utilization bySalmonella enterica , 1999, Applied and Environmental Microbiology.

[49]  J. Shea,et al.  Influence of the Salmonella typhimuriumPathogenicity Island 2 Type III Secretion System on Bacterial Growth in the Mouse , 1999, Infection and Immunity.

[50]  C. Hueck,et al.  Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants , 1998, Microbiology and Molecular Biology Reviews.

[51]  R. Curtiss,et al.  Characterization and immunogenicity of Salmonella typhimurium SL1344 and UK-1 delta crp and delta cdt deletion mutants , 1997, Infection and immunity.

[52]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[53]  S. Altekruse,et al.  Emerging foodborne diseases. , 1997, Emerging infectious diseases.

[54]  N. Srinivasan,et al.  Neisseria meningitidis tonB, exbB, and exbD genes: Ton-dependent utilization of protein-bound iron in Neisseriae , 1997, Journal of bacteriology.

[55]  W. L. Payne,et al.  High Mutation Frequencies Among Escherichia coli and Salmonella Pathogens , 1996, Science.

[56]  V. Lorenzo,et al.  Aerobactin production as a virulence factor: A reevaluation , 1988, European Journal of Clinical Microbiology and Infectious Diseases.

[57]  J. Wells,et al.  Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Marinus,et al.  Correlation of DNA adenine methylase activity with spontaneous mutability in Escherichia coli K-12. , 1984, Gene.

[59]  E. Topp,et al.  Antibiotic resistance and diversity of Salmonella enterica serovars associated with broiler chickens. , 2014, Journal of food protection.

[60]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[61]  V. Dubey,et al.  Genome Analysis of Selected Foodborne Pathogens for Identification of Drug Targets , 2011 .

[62]  P. Artymiuk,et al.  Hemolysin E (HlyE, ClyA, SheA) and related toxins. , 2010, Advances in experimental medicine and biology.

[63]  C. Ratledge,et al.  Iron metabolism in pathogenic bacteria. , 2000, Annual review of microbiology.

[64]  R. H. Bailey,et al.  Presence of Salmonella in the crop and ceca of broiler chickens before and after preslaughter feed withdrawal. , 1999, Poultry science.

[65]  T Gaasterland,et al.  Microbial genescapes: a prokaryotic view of the yeast genome. , 1998, Microbial & comparative genomics.