A Galerkin finite element technique for stochastic field problems

A new finite element method is developed to analyse the structures with more than one parameter behaving in a stochastic manner. The Galerkin weighted residual method is used. As a generalization, this paper treats the random eigenvalue problems arising when the material property values of the structural systems are having stochastic fluctuations i.e. the measurement errors can be accounted for when probabilistic modelling is used. The free vibration problem of a stochastic beam whose Young's modulus and mass density are distributed stochastically is considered. Using Galerkin's weighted residual procedure, a stochastic finite element method is developed and implemented to arrive at a random algebraic eigenvalue problem. The stochastic characteristics of eigensolutions are derived in terms of the stochastic material property variations. Numerical examples are given. It is demonstrated that through this formulation the finite element discretization need not be dependent on the characteristics of stochastic fields describing the fluctuations in the material property values. Further, calculation of covariances between stiffness elements, mass elements, etc., is carried out in a relatively simple manner and is more general in nature.

[1]  J. D. Collins,et al.  Statistical Analysis of the Modal Properties of Large Structural Systems , 1971 .

[2]  Gary C. Hart,et al.  Modal Analysis of Random Structural Systems , 1972 .

[3]  E. H. Kerner PERIODIC IMPURITIES IN A PERIODIC LATTICE , 1954 .

[4]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[5]  R. Fox,et al.  Rates of change of eigenvalues and eigenvectors. , 1968 .

[6]  Wing Kam Liu,et al.  Random field finite elements , 1986 .

[7]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[8]  R. Vaicaitis,et al.  Free vibrations of beams with random characteristics , 1974 .

[9]  R. N. Iyengar,et al.  Probability Distribution of the Eigenvalues of the Random String Equation , 1989 .

[10]  Haym Benaroya,et al.  Finite Element Methods in Probabilistic Structural Analysis: A Selective Review , 1988 .

[11]  R. Ganesan,et al.  Free vibration of a stochastic beam-column using stochastic fem , 1991 .

[12]  R. Ganesan,et al.  Stability analysis of a stochastic column subjected to stochastically distributed loadings using the finite element method , 1992 .

[13]  J. Scheidt,et al.  Random Eigenvalue Problems , 1983 .

[14]  Masanobu Shinozuka,et al.  Random Eigenvalue Problems in Structural Analysis , 1971 .

[15]  R. Ganesan,et al.  Stability of stochastic Leipholz column with stochastic loading , 1992 .

[16]  R. Ghanem,et al.  Stochastic Finite Element Expansion for Random Media , 1989 .

[17]  Masanobu Shinozuka,et al.  Response Variability of Stochastic Finite Element Systems , 1988 .

[18]  Masanobu Shinozuka,et al.  Neumann Expansion for Stochastic Finite Element Analysis , 1988 .

[19]  T. T. Soong,et al.  On the natural frequencies of a disordered linear chain of N degrees of freedom , 1963 .

[20]  William E. Boyce,et al.  Random Transverse Vibrations of Elastic Beams , 1964 .

[21]  J. D. Collins,et al.  The eigenvalue problem for structural systems with statistical properties. , 1969 .

[22]  H. Shah,et al.  Free Vibration of Stochastic Beam-Column , 1971 .

[23]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[24]  A. T. Bharucha-Reid,et al.  Probabilistic methods in applied mathematics , 1968 .

[25]  J. N. Yang,et al.  Free Vibration of a Disordered Periodic Beam , 1974 .

[26]  E. H. Kerner,et al.  The Band Structure of Mixed Linear Lattices , 1956 .

[27]  Shigeru Nakagiri,et al.  Uncertain Eigenvalue Analysis of Composite Laminated Plates by the Stochastic Finite Element Method , 1987 .

[28]  The vibrations of a random elastic string: the method of integral equations , 1964 .