Gravitational search algorithm for determination of controller parameters in an AVR system

This paper presents optimal tuning of the controller parameters of a proportionalintegral-derivate (PID) controller for an Automatic Voltage Regulator (AVR) system using heuristic Gravitational Search Algorithm (GSA) based on mass interactions and the Newton’s Law of Gravity. Determination of the optimal controller parameters is considered as an optimization problem. In this optimization problem, different performance indexes and a performance criterion in the time domain have been used as objective function to test performance and the effectiveness of the GSA. In the determining process of the parameters, the designed PID controller with the proposed approach is simulated under different conditions and performance of the controller is compared to those reported in literature. From numerical simulation results, it is clearly shown that the GSA approach is successfully applied to reveal the performance and the feasibility of the proposed controller in the AVR system.

[1]  Alberto Herreros,et al.  Design of PID-type controllers using multiobjective genetic algorithms. , 2002, ISA transactions.

[2]  Neville R. Watson,et al.  Modified genetic algorithm approach to design of an optimal PID controller for AC-DC transmission systems , 2002 .

[3]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[4]  Dong Hwa Kim,et al.  Intelligent PID Controller Tuning of AVR System Using GA and PSO , 2005, ICIC.

[5]  A. M. El-Zonkoly,et al.  Optimal tuning of power systems stabilizers and AVR gains using particle swarm optimization , 2006, Expert Syst. Appl..

[6]  Dong Hwa Kim,et al.  A hybrid genetic algorithm and bacterial foraging approach for global optimization , 2007, Inf. Sci..

[7]  Wei-Der Chang,et al.  A multi-crossover genetic approach to multivariable PID controllers tuning , 2007, Expert Syst. Appl..

[8]  Sakti Prasad Ghoshal,et al.  INTELLIGENT PARTICLE SWARM OPTIMIZED FUZZY PID CONTROLLER FOR AVR SYSTEM , 2007 .

[9]  Chung-Shi Tseng,et al.  Robust PID control design for permanent magnet synchronous motor: A genetic approach , 2008 .

[10]  V. Mukherjee,et al.  Craziness based and Velocity Relaxed Swarm Optimized Intelligent PID Controlled AVR System , 2008, 2008 Joint International Conference on Power System Technology and IEEE Power India Conference.

[11]  Leandro dos Santos Coelho,et al.  Quantum Gaussian particle swarm optimization approach for PID controller design in AVR system , 2008, 2008 IEEE International Conference on Systems, Man and Cybernetics.

[12]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[13]  S. Baskar,et al.  Evolutionary algorithms based design of multivariable PID controller , 2009, Expert Syst. Appl..

[14]  W. Chang PID control for chaotic synchronization using particle swarm optimization , 2009 .

[15]  Xian-Min Ma,et al.  Application of Ant Colony Algorithm in PID Parameter Optimization for Mining Hoist Direct Torque Control System , 2009, 2009 International Conference on Advanced Computer Control.

[16]  Hossein Nezamabadi-pour,et al.  BGSA: binary gravitational search algorithm , 2010, Natural Computing.

[17]  Yu Guo,et al.  CAS algorithm-based optimum design of PID controller in AVR system , 2009 .

[18]  Pierre-Yves Glorennec,et al.  Tuning fuzzy PID controllers using ant colony optimization , 2009, 2009 17th Mediterranean Conference on Control and Automation.

[19]  Leandro dos Santos Coelho,et al.  Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach , 2009 .

[20]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .

[21]  A. Chatterjee,et al.  Velocity relaxed and craziness-based swarm optimized intelligent PID and PSS controlled AVR system , 2009 .

[22]  W. Chang,et al.  PID controller design of nonlinear systems using an improved particle swarm optimization approach , 2010 .

[23]  Serhat Duman,et al.  GRAVITATIONAL SEARCH ALGORITHM FOR ECONOMIC DISPATCH WITH VALVE-POINT EFFECTS , 2010 .

[24]  Leandro dos Santos Coelho,et al.  Chaotic synchronization using PID control combined with population based incremental learning algorithm , 2010, Expert Syst. Appl..

[25]  Serhat Duman,et al.  Robust Design of PID Controller for Power System Stabilization by Using Real Coded Genetic Algorithm , 2010 .

[26]  Leandro dos Santos Coelho,et al.  A modified ant colony optimization algorithm based on differential evolution for chaotic synchronization , 2010, Expert Syst. Appl..

[27]  G. K. Mahanti,et al.  Comparative Performance of Gravitational Search Algorithm and Modified Particle Swarm Optimization Algorithm for Synthesis of Thinned Scanned Concentric Ring Array Antenna , 2010 .

[28]  O. Ceylan,et al.  Gravitational search algorithm for post-outage bus voltage magnitude calculations , 2010, 45th International Universities Power Engineering Conference UPEC2010.

[29]  Ching-Ting Lee,et al.  Optimal PID Control Design for Synchronization of Delayed Discrete Chaotic Systems , 2010 .

[30]  Serhat Duman,et al.  Application of gravitational search algorithm for optimal reactive power dispatch problem , 2011, 2011 International Symposium on Innovations in Intelligent Systems and Applications.

[31]  Jianzhong Zhou,et al.  Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm , 2011 .

[32]  Haluk Gozde,et al.  Comparative performance analysis of artificial bee colony algorithm for automatic voltage regulator (AVR) system , 2011, J. Frankl. Inst..

[33]  Xiangtao Li,et al.  A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering , 2011, Expert Syst. Appl..

[34]  Ponnuthurai N. Suganthan,et al.  Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization , 2011, Inf. Sci..

[35]  Dong Hwa Kim Hybrid GA-BF based intelligent PID controller tuning for AVR system , 2011, Appl. Soft Comput..

[36]  G. K. Mahanti,et al.  Generation of phase-only pencil-beam pair from concentric ring array antenna using Gravitational Search Algorithm , 2011, 2011 International Conference on Communications and Signal Processing.

[37]  Hossein Nezamabadi-pour,et al.  Filter modeling using gravitational search algorithm , 2011, Eng. Appl. Artif. Intell..

[38]  Hossein Nezamabadi-pour,et al.  Facing the classification of binary problems with a GSA-SVM hybrid system , 2013, Math. Comput. Model..