Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes

The computation of a rigid body transformation which optimally aligns a set of measurement points with a surface and related registration problems are studied from the viewpoint of geometry and optimization. We provide a convergence analysis for widely used registration algorithms such as ICP, using either closest points (Besl and McKay, 1992) or tangent planes at closest points (Chen and Medioni, 1991) and for a recently developed approach based on quadratic approximants of the squared distance function (Pottmann et al., 2004). ICP based on closest points exhibits local linear convergence only. Its counterpart which minimizes squared distances to the tangent planes at closest points is a Gauss–Newton iteration; it achieves local quadratic convergence for a zero residual problem and—if enhanced by regularization and step size control—comes close to quadratic convergence in many realistic scenarios. Quadratically convergent algorithms are based on the approach in (Pottmann et al., 2004). The theoretical results are supported by a number of experiments; there, we also compare the algorithms with respect to global convergence behavior, stability and running time.

[1]  Martial Hebert,et al.  Fully automatic registration of multiple 3D data sets , 2003, Image Vis. Comput..

[2]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[3]  HELMUT POTTMANN,et al.  ALGORITHMS FOR CONSTRAINED MINIMIZATION OF QUADRATIC FUNCTIONS – GEOMETRY AND CONVERGENCE ANALYSIS , .

[4]  Marc Levoy,et al.  A hierarchical method for aligning warped meshes , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[5]  H. Pottmann,et al.  The d2-Tree: A Hierarchical Representation of the Squared Distance Function , 2003 .

[6]  Helmut Pottmann,et al.  Registration of point cloud data from a geometric optimization perspective , 2004, SGP '04.

[7]  Anthony J. Maeder,et al.  The correspondence framework for 3D surface matching algorithms , 2005, Comput. Vis. Image Underst..

[8]  Helmut Pottmann,et al.  Geometry of the Squared Distance Function to Curves and Surfaces , 2002, VisMath.

[9]  Marc Levoy,et al.  Geometrically stable sampling for the ICP algorithm , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[10]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Helmut Pottmann,et al.  Rotational and helical surface approximation for reverse engineering , 1998, Computing.

[12]  Thomas R. Kurfess,et al.  Newton methods for parametric surface registration. Part I. Theory , 2003, Comput. Aided Des..

[13]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[14]  Helmut Pottmann,et al.  From curve design algorithms to the design of rigid body motions , 2004, The Visual Computer.

[15]  M. Hebert,et al.  The Representation, Recognition, and Locating of 3-D Objects , 1986 .

[16]  Mohammed Bennamoun,et al.  Matching Tensors for Automatic Correspondence and Registration , 2004, ECCV.

[17]  H. Pottmann,et al.  Computational Line Geometry , 2001 .

[18]  J. D. Tardós,et al.  Publish or Perish , 1987 .

[19]  Robert B. Fisher,et al.  Special Issue on Registration and Fusion of Range Images , 2002, Comput. Vis. Image Underst..

[20]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[21]  Holly E. Rushmeier,et al.  The 3D Model Acquisition Pipeline , 2002, Comput. Graph. Forum.

[22]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[23]  Sang Wook Lee,et al.  ICP Registration Using Invariant Features , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[25]  Christian Kanzow,et al.  Theorie und Numerik restringierter Optimierungsaufgaben , 2002 .

[26]  Andrew W. Fitzgibbon,et al.  Simultaneous Registration of Multiple Range Views for Use in Reverse Engineering of CAD Models , 1998, Comput. Vis. Image Underst..

[27]  H. Seidel,et al.  Multi-level partition of unity implicits , 2003 .

[28]  Helmut Pottmann,et al.  Registration without ICP , 2004, Comput. Vis. Image Underst..

[29]  Helmut Pottmann,et al.  From curve de-sign algorithms to motion design , 2002 .

[30]  Stefano Soatto,et al.  Integral Invariant Signatures , 2004, ECCV.

[31]  R. Fletcher Practical Methods of Optimization , 1988 .

[32]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[33]  Wolfgang Spohn,et al.  The Representation of , 1986 .

[34]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[35]  Andrew E. Johnson,et al.  Spin-Images: A Representation for 3-D Surface Matching , 1997 .

[36]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[37]  Takeo Kanade,et al.  A Correlation-Based Approach to Robust Point Set Registration , 2004, ECCV.