Spectral Extrema for Graphs: The Zarankiewicz Problem
暂无分享,去创建一个
[1] Béla Bollobás. Review: László Lovász, Combinatorial problems and exercises , 1981 .
[2] B. Bollobás,et al. Extremal Graph Theory , 2013 .
[3] W. G. Brown. On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.
[4] Elvira Rapaport,et al. Hungarian Problem Book I: HUNGARIAN PROBLEM BOOK I , 1964 .
[5] L. Lovász. Combinatorial problems and exercises , 1979 .
[6] V. Nikiforov. A contribution to the Zarankiewicz problem , 2009, 0903.5350.
[7] Vladimir Nikiforov,et al. Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.
[8] Barry Guiduli,et al. The Structure of Trivalent Graphs with Minimal Eigenvalue Gap , 1997 .
[9] Zoltán Füredi,et al. An Upper Bound on Zarankiewicz' Problem , 1996, Combinatorics, Probability and Computing.
[10] Lajos Rónyai,et al. Norm-graphs and bipartite turán numbers , 1996, Comb..
[11] Zoltán Füredi,et al. New Asymptotics for Bipartite Turán Numbers , 1996, J. Comb. Theory, Ser. A.
[12] Noga Alon,et al. Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.
[13] V. Sós,et al. On a problem of K. Zarankiewicz , 1954 .
[14] Béla Bollobás,et al. Cliques and the spectral radius , 2007, J. Comb. Theory, Ser. B.
[15] P. Erdös. ON SEQUENCES OF INTEGERS NO ONE OF WHICH DIVIDES THE PRODUCT OF TWO OTHERS AND ON SOME RELATED PROBLEMS , 2004 .