Modeling and design of infrared and ultraviolet integrated diamond ring Raman lasers

We numerically investigate the capabilities and advantages of Raman lasers based on integrated single-crystal diamond ring resonators. To this end, we first model continuous-wave (CW) Raman lasing action while taking into account the lasing directionality, the linear and nonlinear losses, and the coupling of the fields between the bus and ring sections of racetrack-shaped diamond ring resonators. We then consider the design of the ring resonators for a short-wavelength infrared (SWIR) and an ultraviolet (UV) Raman laser. Using our Raman lasing model, we determine the lasing directionality, pump threshold and lasing efficiency of the SWIR and UV devices. We find that both can yield efficient CW operation with SWIR and UV lasing slope efficiencies of 33% and 65 %, respectively. These results showcase the potential of integrated diamond ring Raman lasers for producing wavelengths that are challenging to generate with other types of integrated lasers.

[1]  Qiang Lin,et al.  Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. , 2006, Optics express.

[2]  Ernst Brinkmeyer,et al.  Analysis of Raman lasing characteristics in silicon-on-insulator waveguides. , 2004, Optics express.

[3]  M. Marinelli,et al.  High quality CVD diamond: a Raman scattering and photoluminescence study , 2001 .

[4]  B Jalali,et al.  Influence of nonlinear absorption on Raman amplification in Silicon waveguides. , 2004, Optics express.

[5]  A. Mckay,et al.  An efficient 14.5 W diamond Raman laser at high pulse repetition rate with first (1240 nm) and second (1485 nm) Stokes output , 2013 .

[6]  R. S. Krishnan Raman Spectrum of Diamond , 1945, Nature.

[7]  Yi Yu,et al.  Nonlinear absorption and refraction in crystalline silicon in the mid‐infrared , 2013 .

[8]  B. Tatian,et al.  Fitting refractive-index data with the Sellmeier dispersion formula. , 1984, Applied optics.

[9]  Lasing Directionality and Polarization Behavior in Continuous-Wave Ring Raman Lasers Based on Micro- and Nano-Scale Silicon Waveguides , 2011, Journal of Lightwave Technology.

[10]  Richard P. Mildren,et al.  Intrinsic Optical Properties of Diamond , 2013 .

[11]  M. D. Dawson,et al.  Multiwatt, Continuous-Wave, Tunable Diamond Raman Laser With Intracavity Frequency-Doubling to the Visible Region , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  W. Marsden I and J , 2012 .

[13]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[14]  Jipeng Lin,et al.  Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm. , 2014, Optics express.

[15]  Ernst Brinkmeyer,et al.  Raman lasers in silicon photonic wires: unidirectional ring lasing versus Fabry-Perot lasing , 2009 .

[16]  F. Payne,et al.  A theoretical analysis of scattering loss from planar optical waveguides , 1994 .

[17]  D. Spence,et al.  Deep ultraviolet diamond Raman laser. , 2011, Optics express.

[18]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[19]  Richard P. Mildren,et al.  1240 nm diamond Raman laser operating near the quantum limit. , 2010, Optics letters.

[20]  S. Calvez,et al.  Diamond Raman Waveguide Lasers: Completely Analytical Design Optimization Incorporating Scattering Losses , 2011, IEEE Journal of Quantum Electronics.

[21]  Influence of waveguide geometry on scattering loss effects in submicron strip silicon-on-insulator waveguides , 2008 .

[22]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[23]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[24]  Strong enhancement of Raman-induced nonreciprocity in silicon waveguides by alignment with the crystallographic axes , 2009 .

[25]  Patrik Rath,et al.  Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films , 2013, Beilstein journal of nanotechnology.

[26]  Martin D. Dawson,et al.  Tunable continuous-wave diamond Raman laser. , 2011, Optics express.

[27]  Ernst Brinkmeyer,et al.  Optical isolation in silicon waveguides based on nonreciprocal Raman amplification , 2008 .

[28]  Christof Debaes,et al.  Modeling mid-infrared continuous-wave silicon-based Raman lasers , 2007, SPIE LASE.

[29]  R. Claps,et al.  Observation of stimulated Raman amplification in silicon waveguides , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[30]  Jipeng Lin,et al.  Ti:sapphire-pumped diamond Raman laser with sub-100-fs pulse duration. , 2014, Optics letters.

[31]  H. Thienpont,et al.  Opportunities for wavelength conversion with on‐chip diamond ring resonators , 2012 .

[32]  Olson,et al.  Thermal conductivity of diamond between 170 and 1200 K and the isotope effect. , 1993, Physical review. B, Condensed matter.

[33]  C. Debaes,et al.  Stokes-Anti-Stokes Iterative Resonator Method for Modeling Raman Lasers , 2006, IEEE Journal of Quantum Electronics.

[34]  Zhenshan Yang,et al.  Enhanced second-harmonic generation in AlGaAs microring resonators. , 2007, Optics letters.

[35]  K. Jarašiūnas,et al.  Optical evaluation of carrier lifetime and diffusion length in synthetic diamonds , 2008 .

[36]  Omri Raday,et al.  Low-threshold continuous-wave Raman silicon laser , 2007 .

[37]  B Jalali,et al.  Phase-matching and Nonlinear Optical Processes in Silicon Waveguides. , 2004, Optics express.

[38]  P. Waldron,et al.  Correlation of Scattering Loss, Sidewall Roughness and Waveguide Width in Silicon-on-Insulator (SOI) Ridge Waveguides , 2009, Journal of Lightwave Technology.

[39]  H. Tang,et al.  Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium , 2013, Scientific reports.

[40]  T. R. Anthony,et al.  Thermal conductivity of diamond between 170 and 1200 K and the isotope effect , 1993 .

[41]  A. Boudrioua Optical Waveguide Theory , 2010 .

[42]  M. E. Cox Handbook of Optics , 1980 .

[43]  I. Bulu,et al.  On-Chip Diamond Raman Laser , 2015, 1509.00373.

[44]  Alexander Sabella,et al.  Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm. , 2014, Optics letters.

[45]  L. Weston,et al.  Characteristics of 2-photon ultraviolet laser etching of diamond , 2011 .

[46]  M. Krause Efficient Raman Amplifiers and Lasers in Optical Fibers and Silicon Waveguides: New Concepts , 2007 .

[47]  A. Talneau,et al.  Impact of electron-beam lithography irregularities across millimeter-scale resonant grating filter performances. , 2010, Applied optics.

[48]  A. Onton,et al.  Temperature dependence of the band gap of silicon , 1974 .

[49]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[50]  Omri Raday,et al.  Monolithic integrated ring resonator Raman silicon laser and amplifier , 2007, SPIE OPTO.

[51]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[52]  Richard P. Mildren,et al.  Optical Engineering of Diamond , 2013 .

[53]  Matthew J. Bohn,et al.  High average power diamond Raman laser. , 2011, Optics express.