Topological and Subsystem Codes on Low-Degree Graphs with Flag Qubits

In this work we introduce two code families, which we call the heavy hexagon code and heavy square code. Both code families are implemented by assigning physical data and ancilla qubits to both vertices and edges of low degree graphs. Such a layout is particularly suitable for superconducting qubit architectures to minimize frequency collisions and crosstalk. In some cases, frequency collisions can be reduced by several orders of magnitude. The heavy hexagon code is a hybrid surface/Bacon-Shor code mapped onto a (heavy) hexagonal lattice whereas the heavy square code is the surface code mapped onto a (heavy) square lattice. In both cases, the lattice includes all the ancilla qubits required for fault-tolerant error-correction. Naively, the limited qubit connectivity might be thought to limit the error-correcting capability of the code to less than its full distance. Therefore, essential to our construction is the use of flag qubits. We modify minimum weight perfect matching decoding to efficiently and scalably incorporate information from measurements of the flag qubits and correct up to the full code distance while respecting the limited connectivity. Simulations show that high threshold values for both codes can be obtained using our decoding protocol. Further, our decoding scheme can be adapted to other topological code families.

[1]  Jay M. Gambetta,et al.  Universal Gate for Fixed-Frequency Qubits via a Tunable Bus , 2016, 1604.03076.

[2]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[3]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[4]  Rui Chao,et al.  Quantum Error Correction with Only Two Extra Qubits. , 2017, Physical review letters.

[5]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[6]  Isaac H. Kim,et al.  The surface code with a twist , 2016, 1612.04795.

[7]  Andrew W. Cross,et al.  Implementing a strand of a scalable fault-tolerant quantum computing fabric , 2013, Nature Communications.

[8]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[9]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[10]  D. Yost,et al.  3D integrated superconducting qubits , 2017, 1706.04116.

[11]  Chad Rigetti,et al.  Superconducting Through-Silicon Vias for Quantum Integrated Circuits , 2017, 1708.02226.

[12]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[13]  A. Fowler,et al.  Proof of finite surface code threshold for matching. , 2012, Physical review letters.

[14]  J. Gambetta,et al.  Procedure for systematically tuning up cross-talk in the cross-resonance gate , 2016, 1603.04821.

[15]  P. Baireuther,et al.  Neural network decoder for topological color codes with circuit level noise , 2018, New Journal of Physics.

[16]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[17]  W. Marsden I and J , 2012 .

[18]  D. Bacon,et al.  Quantum Error Correcting Subsystem Codes From Two Classical Linear Codes , 2006, quant-ph/0610088.

[19]  Andrew W. Cross,et al.  Fault-tolerant preparation of approximate GKP states , 2019, New Journal of Physics.

[20]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[21]  Meng Cheng,et al.  Universal Quantum Computation with Gapped Boundaries. , 2017, Physical review letters.

[22]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[23]  Austin G. Fowler,et al.  Quantum computing with nearest neighbor interactions and error rates over 1 , 2010, 1009.3686.

[24]  Guanyu Zhu,et al.  Triangular color codes on trivalent graphs with flag qubits , 2019 .

[25]  Rui Chao,et al.  Fault-tolerant quantum computation with few qubits , 2017, npj Quantum Information.

[26]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[27]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[28]  Maika Takita,et al.  Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture. , 2016, Physical review letters.

[29]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[30]  Nicholas T. Bronn,et al.  Tunable Superconducting Qubits with Flux-Independent Coherence , 2017, 1702.02253.

[31]  David Poulin,et al.  Fault-Tolerant Quantum Computing in the Pauli or Clifford Frame with Slow Error Diagnostics , 2017, 1704.06662.

[32]  Benjamin J. Brown,et al.  Poking holes and cutting corners to achieve Clifford gates with the surface code , 2016, 1609.04673.

[33]  E. Lucero,et al.  Qubit compatible superconducting interconnects , 2017, 1708.04270.

[34]  D. Leung,et al.  Flag fault-tolerant error correction, measurement, and quantum computation for cyclic Calderbank-Shor-Steane codes , 2018, Physical Review A.

[35]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[36]  J Conrad,et al.  The small stellated dodecahedron code and friends , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Christopher Chamberland,et al.  FLAG FAULT-TOLERANT ERROR CORRECTION WITH ARBITRARY DISTANCE CODES , 2017, 1708.02246.

[38]  Greg Kuperberg,et al.  Quantum computation with Turaev–Viro codes , 2010, 1002.2816.

[39]  Kenneth R. Brown,et al.  2D Compass Codes , 2018, Physical Review X.

[40]  Jay M. Gambetta,et al.  Effective Hamiltonian models of the cross-resonance gate , 2018, Physical Review A.

[41]  Ben W. Reichardt,et al.  Fault-tolerant quantum error correction for Steane’s seven-qubit color code with few or no extra qubits , 2018, Quantum Science and Technology.

[42]  Guanyu Zhu,et al.  Instantaneous braids and Dehn twists in topologically ordered states , 2018, Physical Review B.

[43]  Natalie C. Brown,et al.  Handling leakage with subsystem codes , 2019, New Journal of Physics.

[44]  Guanyu Zhu,et al.  Universal logical gates with constant overhead: instantaneous Dehn twists for hyperbolic quantum codes , 2019, Quantum.

[45]  Andrew W. Cross,et al.  Fault-tolerant magic state preparation with flag qubits , 2018, Quantum.

[46]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[47]  B. Terhal,et al.  Hyperbolic and semi-hyperbolic surface codes for quantum storage , 2017, 1703.00590.

[48]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[49]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[50]  Christopher Chamberland,et al.  Flag fault-tolerant error correction for cyclic CSS codes , 2018 .

[51]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[52]  Barbara M. Terhal,et al.  Constructions and Noise Threshold of Hyperbolic Surface Codes , 2015, IEEE Transactions on Information Theory.

[53]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[54]  H. Bombin,et al.  Topological order with a twist: Ising anyons from an Abelian model. , 2010, Physical review letters.