PRECONDITIONING AND DOMAIN DECOMPOSITION SCHEMES TO SOLVE PDES

We present in this paper some new preconditioning methods in spectral collocation derivative approach to solve linear partial differential equa- tions. Also, additional preconditioning schemes to reduce roundoff errors in computing derivatives using matrix vector multiplication method are intro- duced. Numerical results over some problems indicate the superiority of the new methods.

[1]  Richard Baltensperger,et al.  Spectral Differencing with a Twist , 2002, SIAM J. Sci. Comput..

[2]  A. Bayliss,et al.  Roundoff Error in Computing Derivatives Using the Chebyshev Differentiation Matrix , 1995 .

[3]  Tao Tang,et al.  Boundary Layer Resolving Pseudospectral Methods for Singular Perturbation Problems , 1996, SIAM J. Sci. Comput..

[4]  D. Funaro Polynomial Approximation of Differential Equations , 1992 .

[5]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[6]  Eli Turkel,et al.  Stability of pseudospectral and finite-difference methods for variable coefficient problems , 1981 .

[7]  Mohammad Taghi Darvishi,et al.  Error reduction for higher derivatives of Chebyshev collocation method using preconditioning and domain decomposition , 1999 .

[8]  David Gottlieb,et al.  The stability of pseudospectral-Chebyshev methods , 1981 .

[9]  Eli Turkel,et al.  Global properties of pseudospectral methods , 1989 .

[10]  A. Ralston A first course in numerical analysis , 1965 .

[11]  Ernest E. Rothman Reducing Round-Off Error in Chebyshev Pseudospectral Computations , 1991 .

[12]  Alex Solomonoff,et al.  Accuracy and Speed in Computing the Chebyshev Collocation Derivative , 1995, SIAM J. Sci. Comput..

[13]  Richard M. Everson,et al.  On the errors incurred calculating derivatives using Chebyshev polynomials , 1992 .

[14]  H. Tal-Ezer,et al.  Spectral methods in time for hyperbolic equations , 1986 .

[15]  Mohammad Taghi Darvishi New algorithms for solving odes by pseudospectral method , 2000 .

[16]  Jean-Paul Berrut,et al.  The errors in calculating the pseudospectral differentiation matrices for C̆ebys̆ev-Gauss-Lobatto points , 1999 .

[17]  Alex Solomonoff,et al.  Accuracy Enhancement for Higher Derivatives using Chebyshev Collocation and a Mapping Technique , 1997, SIAM J. Sci. Comput..

[18]  S. Orszag Spectral methods for problems in complex geometries , 1980 .