Effects of aramid honeycomb core on the flame retardance and mechanical property for isocyanate‐based polyimide foams

[1]  I. Huynen,et al.  Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb , 2016 .

[2]  D. Yao,et al.  Processing of composite polystyrene foam with a honeycomb structure , 2015 .

[3]  Jun Wang,et al.  Effects of hydrotalcites and tris (1-chloro-2-propyl) phosphate on thermal stability, cellular structure and fire resistance of isocyanate-based polyimide foams , 2015 .

[4]  Jun Wang,et al.  Enhanced polyimide proportion effects on fire behavior of isocyanate-based polyimide foams by refilled aromatic dianhydride method , 2014 .

[5]  Shi-yong Yang,et al.  Structures and properties of closed‐cell polyimide rigid foams , 2013 .

[6]  A. A. Nia,et al.  An experimental investigation on the effect of strain rate on the behaviour of bare and foam-filled aluminium honeycombs , 2013 .

[7]  C. A. Wilkie,et al.  The role of dispersion of LDH in fire retardancy: The effect of different divalent metals in benzoic acid modified LDH on dispersion and fire retardant properties of polystyrene– and poly(methyl-methacrylate)–LDH–B nanocomposites , 2013 .

[8]  Farhan Gandhi,et al.  Auxetic honeycombs with lossy polymeric infills for high damping structural materials , 2013 .

[9]  M. Zhan,et al.  Preparation and performance of a novel polyimide foam , 2012 .

[10]  Bernhard Schartel,et al.  Development of fire‐retarded materials—Interpretation of cone calorimeter data , 2007 .

[11]  T. Kyu,et al.  Polyimide Foams from Powder: Experimental Analysis of Competitive Diffusion Phenomena , 2005 .

[12]  Daniel B. Holland,et al.  Aromatic polyimide foams : factors that lead to high fire performance , 2005 .

[13]  T. Shimokawa,et al.  Basic mechanical properties of balloon-type TEEK-L polyimide-foam and TEEK-L filled aramid-honeycomb core materials for sandwich structures , 2005 .

[14]  B. Qu,et al.  Expandable graphite systems for halogen-free flame-retarding of polyolefins. I. Flammability characterization and synergistic effect , 2001 .

[15]  K. Suh,et al.  Lightweight Cellular Plastics , 2000 .

[16]  T. F. Johnson,et al.  Polyimide Foams for Aerospace Vehicles , 2000 .

[17]  Leslie R. Richardson,et al.  COMBUSTIBILITY OF BUILDING MATERIALS , 1991 .

[18]  F. H. Prager,et al.  Cone calorimetry—a review of tests carried out on plastics for the association of plastic manufacturers in Europe , 1991 .

[19]  Vytenis Babrauskas,et al.  Development of the cone calorimeter—A bench-scale heat release rate apparatus based on oxygen consumption† , 1982 .

[20]  W. J. Farrissey,et al.  Preparation of a polyimide foam , 1970 .

[21]  Michael I. Friswell,et al.  A computational multi-scale approach for the stochastic mechanical response of foam-filled honeycomb cores , 2012 .

[22]  Vytenis Babrauskas,et al.  Ignitability measurements with the cone calorimeter , 1986 .