Factoring rational polynomials over the complexes

We give NC algorithms for determining the number and degrees of the absolute factors (factors irreducible over the complex numbers C) of a multi-variate polynomial with rational coefficients. NC is the class of functions computable by logspace-uniform Boolean circuits of polynomial size and polylogarithmic depth. The measures of size of the input polynomial are its degree <italic>d</italic>, coefficient length <italic>c</italic>, number of variables <italic>n</italic>, and for sparse polynomials, the number of non-zero coefficients <italic>s</italic>. For the general case, we give a random (Monte-Carlo) NC algorithm in these input measures. If <italic>n</italic> is fixed, or if the polynomial is dense, we give a deterministic NC algorithm. The algorithm also works in random NC for polynomials represented by straight-line programs, provided the polynomial can be evaluated at integer points in NC. Finally, we discuss a method for obtaining an approximation to the coefficients of each factor whose running time is polynomial in the size of the original (dense) polynomial. These methods rely on the fact that the connected components of a <italic>complex</italic> hypersurface <italic>P</italic>(<italic>z</italic><subscrpt>1</subscrpt>…,<italic>z<subscrpt>n</subscrpt></italic>) = 0 minus its singular points correspond to the absolute factors of <italic>P</italic>.

[1]  Emmy Noether Ein algebraisches Kriterium für absolute Irreduzibilität , 1922 .

[2]  J. von zur Gathen Factoring sparse multivariate polynomials , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[3]  Roberto Dvornicich,et al.  Newton Symmetric Functions and the Arithmetic of Algebraically Closed Fields , 1987, AAECC.

[4]  Allan Borodin,et al.  Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[5]  I. Shafarevich Basic algebraic geometry , 1974 .

[6]  Joachim von zur Gathen,et al.  Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..

[7]  P. Henrici,et al.  Applied & computational complex analysis: power series integration conformal mapping location of zero , 1988 .

[8]  Erich Kaltofen,et al.  Fast Parallel Absolute Irreducibility Testing , 1985, J. Symb. Comput..

[9]  James H. Davenport,et al.  Factorization over finitely generated fields , 1981, SYMSAC '81.

[10]  Dominique Duval,et al.  Computations on Curves , 1984, EUROSAM.

[11]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[12]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[13]  John F. Canny,et al.  A new algebraic method for robot motion planning and real geometry , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[14]  Erich Kaltofen,et al.  Polynomial-Time Reductions from Multivariate to Bi- and Univariate Integral Polynomial Factorization , 1985, SIAM J. Comput..

[15]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[16]  Erich Kaltofen,et al.  Effective Hilbert Irreducibility , 1984, Inf. Control..

[17]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[18]  J. Hopcroft,et al.  Fast parallel matrix and GCD computations , 1982, FOCS 1982.

[19]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[20]  Leslie G. Valiant,et al.  Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..

[21]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[22]  Joos Heintz,et al.  Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.