Finite Element and Reliability: Combined Methods by Response Surface

The analysis of reliability for materials and structures requires both a relevant model of the mechanical behavior (scenario of failure, performance function or limit state function) around crisis situations, and an efficient evaluation model of the probability of failure.

[1]  A. Kiureghian,et al.  STRUCTURAL RELIABILITY UNDER INCOMPLETE PROBABILITY INFORMATION , 1986 .

[2]  M. Lemaire,et al.  Reliability Method to Solve Mechanical Problems with Implicit Limit States , 1992 .

[3]  Sang Hyo Kim,et al.  Response surface method using vector projected sampling points , 1997 .

[4]  Nicolas Devictor Fiabilite et mecanique : methodes form/sorm et couplages avec des codes d'elements finis par des surfaces de reponse adaptatives , 1996 .

[5]  R. Rackwitz,et al.  Structural reliability under combined random load sequences , 1978 .

[6]  Bruce R. Ellingwood,et al.  A new look at the response surface approach for reliability analysis , 1993 .

[7]  Giora Maymon,et al.  Direct computation of the design point of a stochastic structure using a finite element code , 1994 .

[8]  L. Faravelli Response‐Surface Approach for Reliability Analysis , 1989 .

[9]  Fred Moses,et al.  A sequential response surface method and its application in the reliability analysis of aircraft structural systems , 1994 .

[10]  Lawrence A. Bergman,et al.  FREE VIBRATION OF COMBINED DYNAMICAL SYSTEMS , 1984 .

[11]  C. Bucher,et al.  A fast and efficient response surface approach for structural reliability problems , 1990 .

[12]  Henrik O. Madsen,et al.  Structural Reliability Methods , 1996 .

[13]  R. Rackwitz,et al.  A New Beta-Point Algorithm for Large Time-Invariant and Time-Variant Reliability Problems , 1991 .

[14]  Maurice Lemaire,et al.  Reliability and mechanical design , 1997 .

[15]  Masanobu Shinozuka,et al.  Structural Safety and Reliability , 2000 .