Thermodynamically consistent linear-gradient damage model in Abaqus

[1]  E. Mart'inez-Paneda,et al.  A simple and robust Abaqus implementation of the phase field fracture method , 2021, Applications in Engineering Science.

[2]  Emilio Mart'inez-Paneda,et al.  A Unified Abaqus Implementation of the Phase Field Fracture Method Using Only a User Material Subroutine , 2021, Materials.

[3]  Philip K. Kristensen,et al.  An assessment of phase field fracture: crack initiation and growth , 2021, Philosophical Transactions of the Royal Society A.

[4]  R. Ma,et al.  A phase field formulation for dissolution-driven stress corrosion cracking , 2020, Journal of the Mechanics and Physics of Solids.

[5]  G. Molnár,et al.  Toughness or strength? Regularization in phase-field fracture explained by the coupled criterion , 2020, Theoretical and Applied Fracture Mechanics.

[6]  Ye Lu,et al.  An efficient and robust staggered algorithm applied to the quasi-static description of brittle fracture by a phase-field approach , 2020 .

[7]  B. Bourdin,et al.  Revisiting nucleation in the phase-field approach to brittle fracture , 2020 .

[8]  Vinh Phu Nguyen,et al.  A length scale insensitive phase field model for brittle fracture of hyperelastic solids , 2020 .

[9]  Abel D. Santos,et al.  Micromechanically-motivated phase field approach to ductile fracture , 2020 .

[10]  G. Molnár,et al.  An open-source Abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation , 2020 .

[11]  Xiao-Ming Liu,et al.  A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration , 2020 .

[12]  A. Turnbull,et al.  Generalised boundary conditions for hydrogen transport at crack tips , 2020, Corrosion Science.

[13]  Jian-Ying Wu,et al.  Comprehensive implementations of phase-field damage models in Abaqus , 2020 .

[14]  Vinh Phu Nguyen,et al.  On the BFGS monolithic algorithm for the unified phase field damage theory , 2020 .

[15]  Emilio Mart'inez-Paneda,et al.  Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme , 2019, Theoretical and Applied Fracture Mechanics.

[16]  Chi Wu,et al.  Phase field fracture in elasto-plastic solids: Abaqus implementation and case studies , 2019, Theoretical and Applied Fracture Mechanics.

[17]  Vinh Phu Nguyen,et al.  Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture , 2019, Engineering Fracture Mechanics.

[18]  P. Qiao,et al.  A coupled peridynamic strength and fracture criterion for open-hole failure analysis of plates under tensile load , 2018, Engineering Fracture Mechanics.

[19]  Jian-Ying Wu,et al.  Robust numerical implementation of non-standard phase-field damage models for failure in solids , 2018, Computer Methods in Applied Mechanics and Engineering.

[20]  John E. Dolbow,et al.  A phase-field formulation for dynamic cohesive fracture , 2018, Computer Methods in Applied Mechanics and Engineering.

[21]  Emilio Mart'inez-Paneda,et al.  A phase field formulation for hydrogen assisted cracking , 2018, Computer Methods in Applied Mechanics and Engineering.

[22]  Markus Kästner,et al.  A convergence study of phase-field models for brittle fracture , 2017 .

[23]  Thomas Wick,et al.  Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation , 2017 .

[24]  Anthony Gravouil,et al.  2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture , 2017 .

[25]  K. Ravi-Chandar,et al.  The formation and growth of echelon cracks in brittle materials , 2017, International Journal of Fracture.

[26]  George Papazafeiropoulos,et al.  Abaqus2Matlab: A suitable tool for finite element post-processing , 2017, Adv. Eng. Softw..

[27]  Guowei Liu,et al.  Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model , 2016 .

[28]  G. Kermouche,et al.  Densification dependent yield criteria for sodium silicate glasses - An atomistic simulation approach , 2016 .

[29]  K. Ravi-Chandar,et al.  On the growth of cracks under mixed-mode I + III loading , 2016, International Journal of Fracture.

[30]  L. Tong,et al.  Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers. , 2016, Nano letters.

[31]  A. Karma,et al.  Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture. , 2015, Physical review letters.

[32]  Marc Kamlah,et al.  An assessment of the phase field formulation for crack growth , 2015 .

[33]  K. Ravi-Chandar,et al.  Further examination of the criterion for crack initiation under mixed-mode I+III loading , 2014, International Journal of Fracture.

[34]  M. Wheeler,et al.  An augmented-Lagrangian method for the phase-field approach for pressurized fractures , 2014 .

[35]  Jean-Jacques Marigo,et al.  Morphogenesis and propagation of complex cracks induced by thermal shocks , 2013 .

[36]  Nicolas Moës,et al.  Damage growth modeling using the Thick Level Set (TLS) approach: Efficient discretization for quasi-static loadings , 2012 .

[37]  Marie-Christine Baietto,et al.  Stabilized global–local X‐FEM for 3D non‐planar frictional crack using relevant meshes , 2011 .

[38]  A. Karma,et al.  Theoretical analysis of crack front instability in mode I þ III , 2011 .

[39]  J. Marigo,et al.  Gradient Damage Models and Their Use to Approximate Brittle Fracture , 2011 .

[40]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[41]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[42]  Alain Karma,et al.  Helical crack-front instability in mixed-mode fracture , 2010, Nature.

[43]  J. Wiebesiek,et al.  Comparison of predictions by mode II or mode III criteria on crack front twisting in three or four point bending experiments , 2008 .

[44]  Ahmed Benallal,et al.  Gradient constitutive relations: numerical aspects and application to gradient damage , 2005 .

[45]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[46]  V. Lazarus,et al.  Crack front rotation and segmentation in mixed mode I + III or I + II + III. Part I: Calculation of stress intensity factors , 2001 .

[47]  V. Lazarus,et al.  Crack front rotation and segmentation in mixed mode I+III or I+II+III. Part II: Comparison with experiments , 2001 .

[48]  F. Feyel,et al.  Interface debonding models: a viscous regularization with a limited rate dependency , 2001 .

[49]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[50]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[51]  Huajian Gao,et al.  A theory of local limiting speed in dynamic fracture , 1996 .

[52]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[53]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[54]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[55]  Wolfgang G. Knauss,et al.  An observation of crack propagation in anti-plane shear , 1970 .

[56]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[57]  K. Cheng Theory of Superconductivity , 1948, Nature.

[58]  Zdenko Tonković,et al.  A residual control staggered solution scheme for the phase-field modeling of brittle fracture , 2019, Engineering Fracture Mechanics.

[59]  Jean-Jacques Marigo,et al.  Crack nucleation in variational phase-field models of brittle fracture , 2018 .

[60]  Z. P. BazÏant,et al.  Size effect on structural strength : a review , 1999 .

[61]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[62]  W. Rankine II. On the stability of loose earth , 1857, Philosophical Transactions of the Royal Society of London.