Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes

Cell membranes are comprised of multicomponent lipid and protein mixtures that exhibit a complex partitioning behavior. Regions of structural and compositional heterogeneity play a major role in the sorting and self-assembly of proteins, and their clustering into higher-order oligomers. Here, we use computer simulations and optical microscopy to study the sorting of transmembrane helices into the liquid-disordered domains of phase-separated model membranes, irrespective of peptide–lipid hydrophobic mismatch. Free energy calculations show that the enthalpic contribution due to the packing of the lipids drives the lateral sorting of the helices. Hydrophobic mismatch regulates the clustering into either small dynamic or large static aggregates. These results reveal important molecular driving forces for the lateral organization and self-assembly of transmembrane helices in heterogeneous model membranes, with implications for the formation of functional protein complexes in real cells.

[1]  G. Schmidt,et al.  In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: heterodimerization is required for antenna pigment organization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[2]  T. Morosinotto,et al.  Mutation Analysis of Lhca1 Antenna Complex , 2002, The Journal of Biological Chemistry.

[3]  Hauke Studier,et al.  Red antenna states of photosystem I from Synechococcus sp. PCC 7002 , 2007, Photosynthesis Research.

[4]  G. Gould,et al.  SNARE proteins are highly enriched in lipid rafts in PC12 cells: Implications for the spatial control of exocytosis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Edidin The state of lipid rafts: from model membranes to cells. , 2003, Annual review of biophysics and biomolecular structure.

[6]  T. Morosinotto,et al.  Recombinant Lhca2 and Lhca3 subunits of the photosystem I antenna system. , 2003, Biochemistry.

[7]  J. Hancock,et al.  Lipid rafts and membrane traffic , 2007, FEBS letters.

[8]  A. Oijen,et al.  Unraveling the electronic structure of individual photosynthetic pigment-protein complexes , 1999, Science.

[9]  T. Morosinotto,et al.  Probing the structure of Lhca3 by mutation analysis. , 2006, Biochimica et biophysica acta.

[10]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[11]  Siewert J. Marrink,et al.  The molecular face of lipid rafts in model membranes , 2008, Proceedings of the National Academy of Sciences.

[12]  G. Garab,et al.  Far‐red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non‐photochemical quenching , 2008, FEBS letters.

[13]  Walter Lloyd Ash Helix-helix interactions in membrane proteins probed with computer simulations , 2009 .

[14]  Thorsten Lang,et al.  The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. , 2006, Biophysical journal.

[15]  Thorsten Lang,et al.  Anatomy and Dynamics of a Supramolecular Membrane Protein Cluster , 2007, Science.

[16]  T. Morosinotto,et al.  The Lhca antenna complexes of higher plants photosystem I. , 2002, Biochimica et biophysica acta.

[17]  J U Bowie,et al.  Helix packing in membrane proteins. , 1997, Journal of molecular biology.

[18]  D. Engelman,et al.  Sequence motifs, polar interactions and conformational changes in helical membrane proteins. , 2003, Current opinion in structural biology.

[19]  T. Morosinotto,et al.  Pigment-Pigment Interactions in Lhca4 Antenna Complex of Higher Plants Photosystem I* , 2005, Journal of Biological Chemistry.

[20]  T. Morosinotto,et al.  The Nature of a Chlorophyll Ligand in Lhca Proteins Determines the Far Red Fluorescence Emission Typical of Photosystem I* , 2003, Journal of Biological Chemistry.

[21]  D. Brown,et al.  Structure and Origin of Ordered Lipid Domains in Biological Membranes , 1998, The Journal of Membrane Biology.

[22]  K. Fleming Standardizing the free energy change of transmembrane helix-helix interactions. , 2002, Journal of molecular biology.

[23]  R. van Grondelle,et al.  Mixing of exciton and charge-transfer states in Photosystem II reaction centers: modeling of Stark spectra with modified Redfield theory. , 2007, Biophysical journal.

[24]  T. McIntosh,et al.  Transbilayer peptide sorting between raft and nonraft bilayers: comparisons of detergent extraction and confocal microscopy. , 2005, Biophysical journal.

[25]  J. Hancock,et al.  Lipid rafts: contentious only from simplistic standpoints , 2006, Nature Reviews Molecular Cell Biology.

[26]  P. Horton,et al.  REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. , 1996, Annual review of plant physiology and plant molecular biology.

[27]  Kai Simons,et al.  Model systems, lipid rafts, and cell membranes. , 2004, Annual review of biophysics and biomolecular structure.

[28]  Thomas Huber,et al.  G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. , 2007, Journal of the American Chemical Society.

[29]  I. V. van Stokkum,et al.  The origin of the low-energy form of photosystem I light-harvesting complex Lhca4: mixing of the lowest exciton with a charge-transfer state. , 2009, Biophysical journal.

[30]  J. Nieder,et al.  Protein dynamics-induced variation of excitation energy transfer pathways , 2009, Proceedings of the National Academy of Sciences.

[31]  Kai Simons,et al.  Plasma membranes are poised for activation of raft phase coalescence at physiological temperature , 2008, Proceedings of the National Academy of Sciences.

[32]  W. Faigle,et al.  Human cataract lens membrane at subnanometer resolution. , 2007, Journal of molecular biology.

[33]  D. K. Schwartz,et al.  Linactants: surfactant analogues in two dimensions. , 2008, Physical review letters.

[34]  M. Veit,et al.  Hemagglutinin of influenza virus partitions into the nonraft domain of model membranes. , 2010, Biophysical journal.

[35]  Markus Deserno,et al.  Membrane composition-mediated protein-protein interactions , 2008, Biointerphases.

[36]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[37]  Rienk van Grondelle,et al.  Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. , 2004, Biochemistry.

[38]  J. Killian,et al.  Different Membrane Anchoring Positions of Tryptophan and Lysine in Synthetic Transmembrane α-Helical Peptides* , 1999, The Journal of Biological Chemistry.

[39]  J. Onuchic,et al.  Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Killian,et al.  Protein–lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring (Review) , 2003, Molecular membrane biology.

[41]  Siewert J Marrink,et al.  Partitioning of lipids at domain boundaries in model membranes. , 2010, Biophysical journal.

[42]  Toshifumi Takao,et al.  Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases , 2000, Nature.

[43]  Deborah A. Brown,et al.  Exclusion of a transmembrane-type peptide from ordered-lipid domains (rafts) detected by fluorescence quenching: extension of quenching analysis to account for the effects of domain size and domain boundaries. , 2003, Biochemistry.

[44]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[45]  Roberta Croce,et al.  Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes. , 2011, Biophysical journal.

[46]  J. Killian,et al.  How protein transmembrane segments sense the lipid environment. , 2007, Biochemistry.

[47]  Tjaart P. J. Krüger,et al.  Fluorescence spectral dynamics of single LHCII trimers. , 2010, Biophysical journal.

[48]  Richard G. W. Anderson,et al.  Lipid rafts: at a crossroad between cell biology and physics , 2007, Nature Cell Biology.

[49]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[50]  H. van Amerongen,et al.  Photosystem I light-harvesting complex Lhca4 adopts multiple conformations: Red forms and excited-state quenching are mutually exclusive. , 2010, Biochimica et biophysica acta.

[51]  James H. Prestegard,et al.  A Transmembrane Helix Dimer: Structure and Implications , 1997, Science.

[52]  Paul A. Wiggins,et al.  Emerging roles for lipids in shaping membrane-protein function , 2009, Nature.

[53]  Graham R Fleming,et al.  Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein , 2008, Science.

[54]  Andrzej J. Rzepiela,et al.  Reconstruction of atomistic details from coarse‐grained structures , 2010, J. Comput. Chem..

[55]  T. Morosinotto,et al.  Antenna complexes protect Photosystem I from Photoinhibition , 2009, BMC Plant Biology.

[56]  Gernot Guigas,et al.  Cluster formation of transmembrane proteins due to hydrophobic mismatching. , 2008, Physical review letters.

[57]  Nathan Nelson,et al.  Crystal structure of plant photosystem I , 2003, Nature.

[58]  T. Morosinotto,et al.  Quenching of chlorophyll triplet states by carotenoids in reconstituted Lhca4 subunit of peripheral light-harvesting complex of photosystem I. , 2005, Biochemistry.

[59]  P. Wolynes,et al.  The energy landscapes and motions of proteins. , 1991, Science.

[60]  Michel Orrit,et al.  Single-molecule optics. , 2004, Annual review of physical chemistry.

[61]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[62]  Victor V. Krasnikov,et al.  Influence of hydrophobic mismatch and amino acid composition on the lateral diffusion of transmembrane peptides. , 2010, Biophysical journal.

[63]  I. V. Polozov,et al.  Liquid domains in vesicles investigated by NMR and fluorescence microscopy. , 2004, Biophysical journal.

[64]  Jürgen Köhler,et al.  Direct observation of tiers in the energy landscape of a chromoprotein: A single-molecule study , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[65]  T. Werge,et al.  Cholesterol-induced protein sorting: an analysis of energetic feasibility. , 2003, Biophysical journal.

[66]  Berend Smit,et al.  Molecular simulations of lipid-mediated protein-protein interactions. , 2008, Biophysical journal.

[67]  T. McIntosh,et al.  Sorting of lens aquaporins and connexins into raft and nonraft bilayers: role of protein homo-oligomerization. , 2009, Biophysical journal.

[68]  R. Croce,et al.  The light-harvesting complexes of higher-plant Photosystem I: Lhca1/4 and Lhca2/3 form two red-emitting heterodimers. , 2011, The Biochemical journal.

[69]  Frederick A. Heberle,et al.  Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Deborah A. Brown,et al.  Lipid-dependent Targeting of G Proteins into Rafts* , 2000, The Journal of Biological Chemistry.

[71]  J. Killian,et al.  Influence of hydrophobic mismatch and palmitoylation on the association of transmembrane α‐helical peptides with detergent‐resistant membranes , 2002, FEBS letters.

[72]  S. Jansson,et al.  A guide to the Lhc genes and their relatives in Arabidopsis/IT> , 1999, Trends in plant science.

[73]  Graham R. Fleming,et al.  Zeaxanthin Radical Cation Formation in Minor Light-harvesting Complexes of Higher Plant Antenna* , 2008, Journal of Biological Chemistry.

[74]  J. Killian,et al.  Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. , 2005, The Journal of biological chemistry.

[75]  Kai Simons,et al.  Lipid rafts and signal transduction , 2000, Nature Reviews Molecular Cell Biology.

[76]  D. Langosch,et al.  A Conserved Membrane-spanning Amino Acid Motif Drives Homomeric and Supports Heteromeric Assembly of Presynaptic SNARE Proteins* , 2000, The Journal of Biological Chemistry.

[77]  L. Valkunas,et al.  Red Chlorophylls in the Exciton Model of Photosystem I , 2005, Photosynthesis Research.

[78]  C. Tietz,et al.  Single-Molecule Spectroscopy on Photosystem I Pigment−Protein Complexes , 2000 .

[79]  R. van Grondelle,et al.  Origin of the 701-nm Fluorescence Emission of the Lhca2 Subunit of Higher Plant Photosystem I* , 2004, Journal of Biological Chemistry.

[80]  A. V. Samsonov,et al.  Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes. , 2001, Biophysical journal.

[81]  P. Schwille,et al.  SNAREs Prefer Liquid-disordered over “Raft” (Liquid-ordered) Domains When Reconstituted into Giant Unilamellar Vesicles*[boxs] , 2004, Journal of Biological Chemistry.

[82]  A. Romeo,et al.  Singlet and triplet state transitions of carotenoids in the antenna complexes of higher-plant photosystem I. , 2007, Biochemistry.

[83]  R. Monshouwer,et al.  Polarized site-selected fluorescence spectroscopy of isolated Photosystem I particles , 1994 .

[84]  R. van Grondelle,et al.  Comparative study of spectral flexibilities of bacterial light-harvesting complexes: structural implications. , 2006, Biophysical journal.

[85]  F. van Mourik,et al.  The low-energy forms of photosystem I light-harvesting complexes: spectroscopic properties and pigment-pigment interaction characteristics. , 2007, Biophysical journal.

[86]  Andrea Rivadossi,et al.  The importance of PS I chlorophyll red forms in light-harvesting by leaves , 1999, Photosynthesis Research.

[87]  Hans Frauenfelder,et al.  Temperature-dependent X-ray diffraction as a probe of protein structural dynamics , 1979, Nature.

[88]  Zhenfeng Liu,et al.  Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution , 2004, Nature.

[89]  P. Sluijs,et al.  How proteins move lipids and lipids move proteins , 2001, Nature Reviews Molecular Cell Biology.

[90]  Petra Schwille,et al.  Probing Lipid Mobility of Raft-exhibiting Model Membranes by Fluorescence Correlation Spectroscopy* , 2003, Journal of Biological Chemistry.

[91]  Yoshiaki Yano,et al.  Measurement of thermodynamic parameters for hydrophobic mismatch 1: self-association of a transmembrane helix. , 2006, Biochemistry.

[92]  J. Kennis,et al.  Identification of a mechanism of photoprotective energy dissipation in higher plants , 2007, Nature.

[93]  I. V. van Stokkum,et al.  Excitation energy transfer pathways in Lhca4. , 2005, Biophysical journal.

[94]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[95]  M. Bretscher,et al.  Cholesterol and the Golgi apparatus. , 1993, Science.

[96]  Bruno Robert,et al.  Molecular basis of photoprotection and control of photosynthetic light-harvesting , 2005, Nature.

[97]  D. Engelman,et al.  Introduction to the membrane protein reviews: the interplay of structure, dynamics, and environment in membrane protein function. , 2006, Annual review of biochemistry.

[98]  A. Holt,et al.  Tilt and rotation angles of a transmembrane model peptide as studied by fluorescence spectroscopy. , 2009, Biophysical journal.

[99]  D. Bruns,et al.  SNAREs are concentrated in cholesterol‐dependent clusters that define docking and fusion sites for exocytosis , 2001, The EMBO journal.

[100]  M. DePristo,et al.  Simultaneous determination of protein structure and dynamics , 2005, Nature.

[101]  D. Lingwood,et al.  Order of lipid phases in model and plasma membranes , 2009, Proceedings of the National Academy of Sciences.

[102]  Watt W. Webb,et al.  Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles , 2007, Proceedings of the National Academy of Sciences.

[103]  Kai Simons,et al.  Lipid Rafts As a Membrane-Organizing Principle , 2010, Science.

[104]  Nathan Nelson,et al.  The structure of a plant photosystem I supercomplex at 3.4 Å resolution , 2007, Nature.

[105]  T. McIntosh,et al.  Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts. , 2003, Biophysical journal.

[106]  K. Niyogi,et al.  PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches. , 1999, Annual review of plant physiology and plant molecular biology.

[107]  Mei Li,et al.  Structural insights into energy regulation of light-harvesting complex CP29 from spinach , 2011, Nature Structural &Molecular Biology.

[108]  H. Scheller,et al.  Red spectral forms of chlorophylls in green plant PSI- A site-selective and high-pressure spectroscopy study , 2003 .

[109]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[110]  G. Weber,et al.  Energetics of ligand binding to proteins. , 1975, Advances in protein chemistry.

[111]  Deborah A. Brown,et al.  Palmitoylation and Intracellular Domain Interactions Both Contribute to Raft Targeting of Linker for Activation of T Cells* , 2005, Journal of Biological Chemistry.