Tracking of Triangular References Using Signal Transformation for Control of a Novel AFM Scanner Stage

In this paper, we design feedback controllers for lateral and transversal axes of an atomic force microscope (AFM) piezoelectric tube scanner. The controllers are constrained to keep the standard deviation of the measurement noise fed back to the displacement output around 0.13 nm. It is shown that the incorporation of appropriate inner loops provides disturbance rejection capabilities and robustness against dc gain uncertainties, two requirements for satisfactory operation of signal transformation method. Simulations and experiments show significant improvement of steady-state tracking error with signal transformation, while limiting the projected measurement noise.

[1]  Chen Youping,et al.  A linear drive system for the dynamic focus module of SLS machines , 2007 .

[2]  Sergej Fatikow,et al.  Investigation of a new process chain based on atomic force microscopy scratching , 2009 .

[3]  S.O.R. Moheimani,et al.  Achieving Subnanometer Precision in a MEMS-Based Storage Device During Self-Servo Write Process , 2008, IEEE Transactions on Nanotechnology.

[4]  Kenji Hirata,et al.  Reference Governor for Constrained Systems with Time-varying References , 2006, 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[5]  Byong Chon Park,et al.  Measurement of microscope calibration standards in nanometrology using a metrological atomic force microscope , 2006 .

[6]  Paolo Pennacchi Robustness of Command Input Preshaping Technique Applied to Residual Vibration Reduction , 2004 .

[7]  S O Reza Moheimani,et al.  Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. , 2008, The Review of scientific instruments.

[8]  Y. Yong,et al.  Simultaneous sensing and actuation with a piezoelectric tube scanner. , 2008, The Review of scientific instruments.

[9]  R. Thalmann,et al.  Long-range AFM profiler used for accurate pitch measurements , 1998 .

[10]  Warren P. Seering,et al.  Preshaping Command Inputs to Reduce System Vibration , 1990 .

[11]  S. Gonda,et al.  Mechanical performances of a symmetrical, monolithic three-dimensional fine-motion stage for nanometrology , 1999 .

[12]  Jae Jong Lee,et al.  Passive compliant wafer stage for single-step nano-imprint lithography , 2005 .

[13]  S. S. Aphale,et al.  High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties , 2008, Nanotechnology.

[14]  Toshiharu Sugie,et al.  Off-Line Reference Shaping of Periodic Trajectories for Constrained Systems With Uncertainties , 2008, IEEE Transactions on Automatic Control.

[15]  Tae Gyoon Lim,et al.  Model-based reference trajectory generation for tip-based learning controller , 2005 .

[16]  A. Fleming,et al.  Evaluation of charge drives for scanning probe microscope positioning stages , 2008, 2008 American Control Conference.

[17]  S. O. Reza Moheimani,et al.  Sensor fusion for improved control of piezoelectric tube scanners , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[18]  Theodore Antonakopoulos,et al.  Probe-based ultrahigh-density storage technology , 2008, IBM J. Res. Dev..

[19]  Masayuki Abe,et al.  Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force Microscopy , 2008, Science.

[20]  I.A. Mahmood,et al.  Tracking Control of a Nanopositioner Using Complementary Sensors , 2009, IEEE Transactions on Nanotechnology.

[21]  A. Sebastian,et al.  Control of MEMS-Based Scanning-Probe Data-Storage Devices , 2007, IEEE Transactions on Control Systems Technology.

[22]  O. Wood,et al.  Novel alignment system for imprint lithography , 2000 .

[23]  Sang-il Park,et al.  Advanced nanoscale metrology of pole-tip recession with AFM , 2005 .

[24]  Kam K. Leang,et al.  Design and Analysis of Discrete-Time Repetitive Control for Scanning Probe Microscopes , 2009 .

[25]  F. Allgöwer,et al.  High performance feedback for fast scanning atomic force microscopes , 2001 .

[26]  I. Schmitz,et al.  Phase imaging as an extension to tapping mode AFM for the identification of material properties on humidity-sensitive surfaces , 1997 .

[27]  Toshiharu Sugie,et al.  Robust reference shaping of periodic trajectories for systems with state/input constraints using impulse and step responses , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[28]  S. O. Reza Moheimani,et al.  High-Performance Control of Piezoelectric Tube Scanners , 2007, IEEE Transactions on Control Systems Technology.

[29]  Yuen Kuan Yong,et al.  Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning , 2009, IEEE Transactions on Nanotechnology.

[30]  Naim A. Kheir,et al.  Control system design , 2001, Autom..

[31]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[32]  Abu Sebastian,et al.  Signal transformation approach to fast nanopositioning. , 2009, The Review of scientific instruments.

[33]  Yi-Cheng Huang,et al.  ULTRA‐FINE TRACKING CONTROL ON PIEZOELECTRIC ACTUATED MOTION STAGE USING PIEZOELECTRIC HYSTERETIC MODEL , 2008 .

[34]  Warren P. Seering,et al.  Using input command pre-shaping to suppress multiple mode vibration , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[35]  Qingze Zou,et al.  Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation , 2005, IEEE Transactions on Control Systems Technology.

[36]  S. S. Aphale,et al.  High speed nano-scale positioning using a piezoelectric tube actuator with active shunt control , 2007 .

[37]  S. O. Reza Moheimani,et al.  Piezoelectric Transducers for Vibration Control and Damping , 2006 .

[38]  A. Fleming,et al.  A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners , 2005 .

[39]  Yea-Chin Yeh,et al.  Application of the continuous no-reset switching iterative learning control on a novel optical scanning system , 2009 .

[40]  S. Li-ning,et al.  Tracking control of piezoelectric actuator based on a new mathematical model , 2004 .

[41]  Mohammad Javad Yazdanpanah,et al.  Design of a feedforward controller for AFM nanopositioning based on neural network control theory , 2009, 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[42]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .

[43]  Gil U. Lee,et al.  Scanning probe microscopy. , 2010, Current opinion in chemical biology.

[44]  Ilya V. Kolmanovsky,et al.  Nonlinear tracking control in the presence of state and control constraints: a generalized reference governor , 2002, Autom..

[45]  Saburo Matsuoka,et al.  Evaluation of mechanical properties in nanometer scale using AFM-based nanoindentation tester , 1999 .

[46]  S.O.R. Moheimani,et al.  PVPF control of piezoelectric tube scanners , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[47]  Goele Pipeleers,et al.  Optimal Performance Tradeoffs in Repetitive Control: Experimental Validation on an Active Air Bearing Setup , 2009, IEEE Transactions on Control Systems Technology.

[48]  Bharat Bhushan,et al.  Nanotribology And Nanomechanics- An Introduction , 2008 .

[49]  Paolo Pennacchi,et al.  Pre-shaping motion input for a rotating flexible link , 2001 .