Facile Synthetic Route of a Solution-Processable, Thieno[3,4-c]pyrrolo-4,6-dione-Based Conjugated Small Molecule and Control of the Optoelectronic Properties via Processing Additives

In this study, a new type of low-bandgap small molecule has been synthesized with a thieno[3,4-c]pyrrole-4,6-dione (TPD) derivative for application in bulk heterojunction (BJH) solar cells. The series of solar cells were fabricated by blending the TPD-based small molecule (M1) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM). In order to optimize the performance of solar cells, the nanoscale morphologies of the BHJ layers were controlled via processing additives with 1,8-diiodooctane (DIO) and 1-chloronaphthalene (CN). Therefore, we demonstrated that the use of CN successively suppressed molecular aggregation and demonstrated suitable phase separation, in addition to increasing the power conversion efficiency from 0.36% to 1.86%.

[1]  Guillermo C Bazan,et al.  Pyridalthiadiazole-based narrow band gap chromophores. , 2012, Journal of the American Chemical Society.

[2]  A. Arias,et al.  Materials and applications for large area electronics: solution-based approaches. , 2010, Chemical reviews.

[3]  David Gendron,et al.  New conjugated polymers for plastic solar cells , 2011 .

[4]  K. Müllen,et al.  Field-effect transistors based on a benzothiadiazole-cyclopentadithiophene copolymer. , 2007, Journal of the American Chemical Society.

[5]  M. Toney,et al.  Solvent Additives: Key Morphology‐Directing Agents for Solution‐Processed Organic Solar Cells , 2018, Advanced materials.

[6]  Fan Zhang,et al.  Thiophene-based conjugated oligomers for organic solar cells , 2011 .

[7]  Claire H. Woo,et al.  Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill Factors via Pyrene‐Directed Molecular Self‐Assembly , 2011, Advanced materials.

[8]  K. Wei,et al.  Crystalline conjugated polymer containing fused 2,5-di(thiophen-2-yl)thieno[2,3-b]thiophene and thieno[3,4-c]pyrrole-4,6-dione units for bulk heterojunction solar cells. , 2011, Chemical communications.

[9]  Thuc‐Quyen Nguyen,et al.  Morphology control of solution processable small molecule bulk heterojunction solar cellsviasolvent additives , 2012 .

[10]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[11]  M. Stylianakis,et al.  New 4,7-dithienebenzothiadiazole derivatives with cyano-vinylene bonds: Synthesis, photophysics and photovoltaics , 2009 .

[12]  Ye Tao,et al.  A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. , 2010, Journal of the American Chemical Society.

[13]  Thuc-Quyen Nguyen,et al.  Small Molecule Solution-Processed Bulk Heterojunction Solar Cells† , 2011 .

[14]  M. Sommer,et al.  Solvent Additive Control of Morphology and Crystallization in Semiconducting Polymer Blends , 2012, Advanced materials.

[15]  A. D. Dhass,et al.  Influence of shunt resistance on the performance of solar photovoltaic cell , 2012, 2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM).

[16]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[17]  Jean Roncali,et al.  Molecular bulk heterojunctions: an emerging approach to organic solar cells. , 2009, Accounts of chemical research.

[18]  Ken‐Tsung Wong,et al.  New A-A-D-A-A-type electron donors for small molecule organic solar cells. , 2011, Organic letters.

[19]  Alan J. Heeger,et al.  Solar cell efficiency, self-assembly, and dipole-dipole interactions of isomorphic narrow-band-gap molecules. , 2012, Journal of the American Chemical Society.

[20]  R. Service,et al.  Solar energy. Outlook brightens for plastic solar cells. , 2011, Science.

[21]  Wei You,et al.  Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. , 2011, Journal of the American Chemical Society.

[22]  Markus Hösel,et al.  Solar cells with one-day energy payback for the factories of the future , 2012 .

[23]  Yao Liu,et al.  Solution-processable small molecules based on thieno[3,4-c]pyrrole-4,6-dione for high-performance solar cells , 2012 .

[24]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[25]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[26]  G. Bazan,et al.  Impact of regiochemistry and isoelectronic bridgehead substitution on the molecular shape and bulk organization of narrow bandgap chromophores. , 2013, Journal of the American Chemical Society.

[27]  Yongfang Li,et al.  All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units , 2016 .

[28]  Yongfang Li,et al.  A Solution Processable D‐A‐D Molecule based on Thiazolothiazole for High Performance Organic Solar Cells , 2012 .

[29]  Soyun Park,et al.  Controlling the optoelectronic properties of narrow bandgap organic chromophores upon isoelectronic bridgehead substitution , 2018, Dyes and Pigments.

[30]  Meng-Huan Jao,et al.  Additives for morphology control in high-efficiency organic solar cells , 2013 .

[31]  K. Leo,et al.  Small-molecule solar cells—status and perspectives , 2008, Nanotechnology.

[32]  Jean M. J. Fréchet,et al.  Polymer—Fullerene Composite Solar Cells. , 2008 .

[33]  John E. Anthony,et al.  Photovoltaics from soluble small molecules , 2007 .

[34]  K. Meerholz,et al.  Tailored merocyanine dyes for solution-processed BHJ solar cells , 2010 .

[35]  S. Forrest,et al.  Efficient, ordered bulk heterojunction nanocrystalline solar cells by annealing of ultrathin squaraine thin films. , 2010, Nano letters.

[36]  Yongfang Li,et al.  A Solution‐Processable Star‐Shaped Molecule for High‐Performance Organic Solar Cells , 2011, Advanced materials.

[37]  K. Meerholz,et al.  Outstanding short-circuit currents in BHJ solar cells based on NIR-absorbing acceptor-substituted squaraines. , 2009, Angewandte Chemie.

[38]  M. Wienk,et al.  Copolymers of Cyclopentadithiophene and Electron‐Deficient Aromatic Units Designed for Photovoltaic Applications , 2009 .

[39]  H. Ade,et al.  High‐Efficiency All‐Small‐Molecule Organic Solar Cells Based on an Organic Molecule Donor with Alkylsilyl‐Thienyl Conjugated Side Chains , 2018, Advanced materials.

[40]  Yongsheng Chen,et al.  High performance photovoltaic applications using solution-processed small molecules. , 2013, Accounts of chemical research.

[41]  L. Vaccaro,et al.  Small Molecular Aryl Acetylenes: Chemically Tailoring High-Efficiency Organic Semiconductors for Solar Cells and Field-Effect Transistors. , 2014, ChemPlusChem.

[42]  Ye Tao,et al.  Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.

[43]  M. Leclerc,et al.  Low-cost synthesis and physical characterization of thieno[3,4-c]pyrrole-4,6-dione-based polymers. , 2012, The Journal of organic chemistry.

[44]  M. Leclerc,et al.  Thieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Optoelectronic Applications , 2013 .

[45]  Wei You,et al.  Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency. , 2011, Angewandte Chemie.

[46]  Muhammad S. Khan,et al.  High efficiency small molecule-based donor materials for organic solar cells , 2018, Organic Electronics.

[47]  M. Woodhouse,et al.  Molecular semiconductors in organic photovoltaic cells. , 2010, Chemical reviews.

[48]  Yan Yao,et al.  Marked alkyl- vs alkenyl-substitutent effects on squaraine dye solid-state structure, carrier mobility, and bulk-heterojunction solar cell efficiency. , 2010, Journal of the American Chemical Society.

[49]  J. Fréchet,et al.  Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. , 2011, Journal of the American Chemical Society.

[50]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[51]  D. D. de Leeuw,et al.  Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. , 2009, Journal of the American Chemical Society.

[52]  李轩华,et al.  Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells , 2012 .

[53]  K. Wei,et al.  A Thieno[3,4-c]pyrrole-4,6-dione-Based Donor-Acceptor Polymer Exhibiting High Crystallinity for Photovoltaic Applications , 2010 .

[54]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[55]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[56]  D. D. de Leeuw,et al.  Efficient Solar Cells Based on an Easily Accessible Diketopyrrolopyrrole Polymer , 2010, Advanced materials.

[57]  W. You,et al.  Rational Design of High Performance Conjugated Polymers for Organic Solar Cells , 2012 .

[58]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[59]  M. Leclerc,et al.  Synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers by direct heteroarylation. , 2012, Angewandte Chemie.

[60]  Zaifang Li,et al.  Solution processable D–A small molecules for bulk-heterojunction solar cells , 2010 .

[61]  U. Jeng,et al.  Improving Device Efficiency of Polymer/Fullerene Bulk Heterojunction Solar Cells Through Enhanced Crystallinity and Reduced Grain Boundaries Induced by Solvent Additives , 2011, Advanced materials.

[62]  Alan J. Heeger,et al.  A New Terthiophene‐Thienopyrrolodione Copolymer‐Based Bulk Heterojunction Solar Cell with High Open‐Circuit Voltage , 2012 .

[63]  Robert Graf,et al.  Ultrahigh mobility in polymer field-effect transistors by design. , 2011, Journal of the American Chemical Society.

[64]  Alberto Salleo,et al.  Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. , 2010, Journal of the American Chemical Society.

[65]  M. Urien,et al.  Polymeric solar cells based on P3HT:PCBM: Role of the casting solvent , 2011 .