Reasoning with Time Intervals: A Logical and Computational Perspective

The role of time in artificial intelligence is extremely important. Interval-based temporal reasoning can be seen as a generalization of the classical point-based one, and the first results in this field date back to Hamblin (1972) and Benhtem (1991) from the philosophical point of view, to Allen (1983) from the algebraic and first-order one, and to Halpern and Shoham (1991) from the modal logic one. Without purporting to provide a comprehensive survey of the field, we take the reader to a journey through the main developments in modal and first-order interval temporal reasoning over the past ten years and outline some landmark results on expressiveness and (un)decidability of the satisfiability problem for the family of modal interval logics.

[1]  Peter J. F. Lucas,et al.  Meta-level Verification of the Quality of Medical Guidelines Using Interactive Theorem Proving , 2004, JELIA.

[2]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[3]  Valentin Goranko,et al.  Expressiveness of the Interval Logics of Allen's Relations on the Class of All Linear Orders: Complete Classification , 2011, IJCAI.

[4]  Valentin Goranko,et al.  Propositional Interval Neighborhood Temporal Logics , 2003, J. Univers. Comput. Sci..

[5]  Wolfgang Bibel,et al.  Let's Plan It Deductively! , 1997, IJCAI.

[6]  Yde Venema,et al.  A Modal Logic for Chopping Intervals , 1991, J. Log. Comput..

[7]  Erich Grädel,et al.  Why are Modal Logics so Robustly Decidable? , 2001, Bull. EATCS.

[8]  Hadas Kress-Gazit,et al.  Temporal Logic Motion Planning for Mobile Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[9]  Martin Otto,et al.  Two variable first-order logic over ordered domains , 2001, Journal of Symbolic Logic.

[10]  Benno Stein,et al.  Studienarbeit A Study of Evolutionary Algorithms for the Satisfiability Problem , 2004 .

[11]  Yde Venema,et al.  Expressiveness and Completeness of an Interval Tense Logic , 1990, Notre Dame J. Formal Log..

[12]  Wolfgang Thomas,et al.  Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics , 1990 .

[13]  Stéphane Demri,et al.  LTL with the Freeze Quantifier and Register Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[14]  Peter B. Ladkin,et al.  Models of Axioms for Time Intervals , 1987, AAAI.

[15]  Davide Bresolin,et al.  The Light Side of Interval Temporal Logic: The Bernays-Schönfinkel's Fragment of CDT , 2011, TIME.

[16]  Valentin Goranko,et al.  Two-sorted Point-Interval Temporal Logics , 2011, M4M/LAMAS.

[17]  Gabriele Puppis,et al.  Maximal Decidable Fragments of Halpern and Shoham's Modal Logic of Intervals , 2010, ICALP.

[18]  Benjamin Charles Moszkowski Reasoning about Digital Circuits , 1983 .

[19]  Davide Bresolin,et al.  The Dark Side of Interval Temporal Logic: Sharpening the Undecidability Border , 2011, 2011 Eighteenth International Symposium on Temporal Representation and Reasoning.

[20]  Davide Bresolin,et al.  Interval Temporal Logics over Strongly Discrete Linear Orders: the Complete Picture , 2012, GandALF.

[21]  David E. Smith The Case for Durative Actions: A Commentary on PDDL2.1 , 2003, J. Artif. Intell. Res..

[22]  Valentin Goranko,et al.  A Road Map of Interval Temporal Logics and Duration Calculi , 2004, J. Appl. Non Class. Logics.

[23]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[24]  Davide Bresolin,et al.  Optimal Tableau Systems for Propositional Neighborhood Logic over All, Dense, and Discrete Linear Orders , 2011, TABLEAUX.

[25]  Angelo Montanari,et al.  Decidability of the Logics of the Reflexive Sub-interval and Super-interval Relations over Finite Linear Orders , 2010, 2010 17th International Symposium on Temporal Representation and Reasoning.

[26]  Carla Limongelli,et al.  Linear temporal logic as an executable semantics for planning languages , 2007, J. Log. Lang. Inf..

[27]  Davide Bresolin,et al.  On Begins, Meets and before , 2012, Int. J. Found. Comput. Sci..

[28]  Richard T. Snodgrass,et al.  Reconciling Point-based and Interval-based Semantics in Temporal Relational Databases : A Proper Treatment of the Telic / Atelic Distinction , 2001 .

[29]  Juan Carlos Augusto,et al.  The Use of Temporal Reasoning and Management of Complex Events in Smart Homes , 2004, ECAI.

[30]  Michael R. Hansen,et al.  An Adequate First Order Interval Logic , 1997, COMPOS.

[31]  Eugene C. Freuder,et al.  Constraint-based reasoning , 1994 .

[32]  Guido Sciavicco,et al.  Non-finite Axiomatizability and Undecidability of Interval Temporal Logics with C, D, and T , 2008, CSL.

[33]  Davide Bresolin,et al.  Interval Temporal Logics over Finite Linear Orders: the Complete Picture , 2012, ECAI.

[34]  Davide Bresolin,et al.  Decidable and Undecidable Fragments of Halpern and Shoham's Interval Temporal Logic: Towards a Complete Classification , 2008, LPAR.

[35]  Jakub Michaliszyn,et al.  B and D Are Enough to Make the Halpern-Shoham Logic Undecidable , 2010, ICALP.

[36]  Chaochen Zhou,et al.  Completeness of Neighbourhood Logic , 1999, STACS.

[37]  Davide Bresolin,et al.  Propositional interval neighborhood logics: Expressiveness, decidability, and undecidable extensions , 2009, Ann. Pure Appl. Log..

[38]  Pietro Sala,et al.  Temporal Functional Dependencies Based on Interval Relations , 2011, 2011 Eighteenth International Symposium on Temporal Representation and Reasoning.

[39]  Cecilia J. Coetzee,et al.  Representation theorems for classes of interval structures , 2010 .

[40]  D. Christie,et al.  The Logic of Time: A Model-Theoretic Investigation into the Varieties of Temporal Ontology and Temporal Discourse , 1985 .

[41]  C. A. R. Hoare,et al.  A Calculus of Durations , 1991, Inf. Process. Lett..

[42]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[43]  Patrick J. Hayes,et al.  A Common-Sense Theory of Time , 1985, IJCAI.

[44]  C. L. Hamblin Instants and intervals. , 1971, Studium generale; Zeitschrift fur die Einheit der Wissenschaften im Zusammenhang ihrer Begriffsbildungen und Forschungsmethoden.

[45]  Jakub Michaliszyn,et al.  The Ultimate Undecidability Result for the Halpern-Shoham Logic , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[46]  Philippe Schnoebelen,et al.  Verifying lossy channel systems has nonprimitive recursive complexity , 2002, Inf. Process. Lett..

[47]  Levent Aksoy,et al.  An Evolutionary Local Search Algorithm for the Satisfiability Problem , 2005, TAINN.

[48]  Willem Conradie,et al.  On the Expressive Power of First Order-Logic Extended with Allen's Relations in the Strict Case , 2011, CAEPIA.

[49]  Peter Øhrstrøm,et al.  Temporal logic - from ancient ideas to artificial intelligence , 2010, Studies in linguistics and philosophy.

[50]  P. S. Thiagarajan,et al.  A Logical Study of Distributed Transition Systems , 1995, Inf. Comput..

[51]  Manuel Campos,et al.  Quality Checking of Medical Guidelines Using Interval Temporal Logics: A Case-Study , 2009, IWINAC.

[52]  Philippe Schnoebelen,et al.  On Termination for Faulty Channel Machines , 2008, STACS.

[53]  Guido Sciavicco,et al.  Decidability of the Interval Temporal Logic ABB over the Natural Numbers , 2010, STACS.

[54]  Richard T. Snodgrass,et al.  The TSQL2 Temporal Query Language , 1995 .

[55]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[56]  Davide Bresolin,et al.  What's Decidable about Halpern and Shoham's Interval Logic? The Maximal Fragment ABBL , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[57]  Davide Bresolin,et al.  An Optimal Decision Procedure for Right Propositional Neighborhood Logic , 2006, Journal of Automated Reasoning.

[58]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[59]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[60]  Elena Marchiori,et al.  Evolutionary Algorithms for the Satisfiability Problem , 2002, Evolutionary Computation.

[61]  Jin-Kao Hao,et al.  Evolutionary Computing for the Satisfiability Problem , 2003, EvoWorkshops.