Modeling the effect of lithium-induced pedestal profiles on scrape-off-layer turbulence and the heat flux width

The effect of lithium (Li) wall coatings on scrape-off-layer (SOL) turbulence in the National Spherical Torus Experiment (NSTX) is modeled with the Lodestar SOLT (SOL Turbulence) code. Specifically, the implications for the SOL heat flux width of experimentally observed, Li-induced changes in the pedestal profiles are considered. The SOLT code used in the modeling has been expanded recently to include ion temperature evolution and ion diamagnetic drift effects. This work focuses on two NSTX discharges occurring pre- and with-Li deposition. The simulation density and temperature profiles are constrained, inside the last closed flux surface only, to match those measured in the two experiments, and the resulting drift-interchange-driven turbulence is explored. The effect of Li enters the simulation only through the pedestal profile constraint: Li modifies the experimental density and temperature profiles in the pedestal, and these profiles affect the simulated SOL turbulence. The power entering the SOL measu...

[1]  E. Wolfrum,et al.  The influence of finite ion temperature on plasma blob dynamics , 2014 .

[2]  Effects of the parallel electron dynamics and finite ion temperature on the plasma blob propagation in the scrape-off layer , 2008 .

[3]  L. Zakharov,et al.  Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment , 2009 .

[4]  D. N. Hill,et al.  Multi-Machine Scaling of the Divertor Peak Heat Flux and Width for L-Mode and H-Mode Discharges , 1999 .

[5]  S. Paul,et al.  The effects of increasing lithium deposition on the power exhaust channel in NSTX , 2014 .

[6]  P. Catto,et al.  Drift-ordered fluid equations for field-aligned modes in low-β collisional plasma with equilibrium pressure pedestals , 2003 .

[7]  P. Kaw,et al.  Role of ion temperature on scrape-off layer plasma turbulence , 2013 .

[8]  Y. Tsidulko,et al.  Electron-temperature-gradient-induced instability in tokamak scrape-off layers , 1993 .

[9]  U. Stroth,et al.  Filament velocity scaling laws for warm ions , 2013 .

[10]  A. Diallo,et al.  Edge turbulence velocity changes with lithium coating on NSTX , 2012 .

[11]  D K Mansfield,et al.  Edge-localized-mode suppression through density-profile modification with lithium-wall coatings in the National Spherical Torus Experiment. , 2009, Physical review letters.

[12]  J. Manickam,et al.  The effect of progressively increasing lithium coatings on plasma discharge characteristics, transport, edge profiles and ELM stability in the National Spherical Torus Experiment , 2012 .

[13]  P. Stangeby The Plasma Boundary of Magnetic Fusion Devices , 2000 .

[14]  Brian Labombard,et al.  Edge sheared flows and the dynamics of blob-filaments , 2013 .

[15]  D. Russell,et al.  Numerical investigation of edge plasma phenomena in an enhanced D-alpha discharge at Alcator C-Mod: Parallel heat flux and quasi-coherent edge oscillations , 2012 .

[16]  R. Bell,et al.  Edge transport and turbulence reduction with lithium coated plasma facing components in the National Spherical Torus Experiment a) , 2011 .

[17]  L. L. LoDestro,et al.  Status and verification of edge plasma turbulence code BOUT , 2009, Comput. Phys. Commun..

[18]  P. Stott,et al.  Plasma Physics and Controlled Fusion Conference: Focussing on Tokamak Research , 1995 .

[19]  F. Halpern,et al.  Turbulent regimes in the tokamak scrape-off layer , 2013 .

[20]  F. Halpern,et al.  Theory of the scrape-off layer width in inner-wall limited tokamak plasmas , 2014 .

[21]  D. Russell,et al.  Reduced model simulations of the scrape-off-layer heat-flux width and comparison with experiment , 2011 .

[22]  J. Madsen,et al.  The influence of finite Larmor radius effects on the radial interchange motions of plasma filaments , 2011 .

[23]  M. Ono,et al.  The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment , 2008 .

[24]  D. A. D’Ippolito,et al.  Recent theoretical progress in understanding coherent structures in edge and SOL turbulence , 2008, Journal of Plasma Physics.

[25]  R. Bell,et al.  Midplane neutral density profiles in the National Spherical Torus Experiment , 2015 .

[26]  James Myra,et al.  Convective transport by intermittent blob-filaments: Comparison of theory and experiment , 2011 .

[27]  B. LaBombard,et al.  Experimental studies of edge turbulence and confinement in Alcator C-Mod , 2010 .

[28]  R. E. Bell,et al.  Edge and SOL turbulence and blob variations over a large database in NSTX , 2015 .

[29]  J. Angus,et al.  Modeling of large amplitude plasma blobs in three-dimensions , 2014 .

[30]  J. Angus,et al.  Effects of parallel electron dynamics on plasma blob transport , 2012 .

[31]  D. Russell,et al.  Turbulent transport regimes and the scrape-off layer heat flux width , 2015 .

[32]  E. Wolfrum,et al.  Magnetic field dependence of the blob dynamics in the edge of ASDEX upgrade L-mode plasmas , 2014 .

[33]  F. Halpern,et al.  Finite ion temperature effects on scrape-off layer turbulence , 2015 .

[34]  A. Hasegawa,et al.  A collisional drift wave description of plasma edge turbulence , 1984 .

[35]  J. Madsen,et al.  Radial convection of finite ion temperature, high amplitude plasma blobs , 2014, 1404.0546.

[36]  R. Bell,et al.  Edge transport studies in the edge and scrape-off layer of the National Spherical Torus Experiment with Langmuir probes , 2014 .

[37]  S. Krasheninnikov,et al.  Two-dimensional modelling of blob dynamics in tokamak edge plasmas , 2006 .

[38]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[39]  R. Bell,et al.  Edge microstability of NSTX plasmas without and with lithium-coated plasma-facing components , 2013 .

[40]  V. Naulin,et al.  Numerical scalings of the decay lengths in the scrape-off layer , 2013 .