Error estimation with postprocessed finite element solutions

Abstract The superconvergent patch recovery (SPR) technique and its enhancements has been shown to be an accurate and efficient method to obtain an improved solution. It gives a more accurate solution and it can be utilized for an error estimation of the finite element solution. The improved solution often has at least one order higher convergence rate and is much more accurate than the finite element solution. The paper gives a review of different aspects and enhancements of the SPR-technique and proposes an additional global iteration procedure, which gives an even higher accuracy. These changes make it possible to give an error estimation of the improved solution. The different error estimations are used in an adaptive process, showing that improved error estimation gives improved adaptivity performance.

[1]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[2]  O. C. Zienkiewicz,et al.  Superconvergent patch recovery techniques – some further tests , 1993 .

[3]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[4]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[5]  C. W. Clenshaw,et al.  Curve and Surface Fitting , 1965 .

[6]  Erwin Stein,et al.  An equilibrium method for stress calculation using finite element displacement models , 1977 .

[7]  M. G. Salvadori,et al.  Numerical methods in engineering , 1955 .

[8]  Nils-Erik Wiberg,et al.  Improved element stresses for node and element patches using superconvergent patch recovery , 1995 .

[9]  Nils-Erik Wiberg,et al.  Patch recovery based on superconvergent derivatives and equilibrium , 1993 .

[10]  J. Barlow,et al.  Optimal stress locations in finite element models , 1976 .

[11]  N. Wiberg,et al.  A posteriori error estimate by element patch post-processing, adaptive analysis in energy and L2 norms , 1994 .

[12]  Nils-Erik Wiberg,et al.  Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .

[13]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .

[14]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[15]  Claes Johnson,et al.  Adaptive finite element methods in computational mechanics , 1992 .

[16]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[17]  Nils-Erik Wiberg,et al.  Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .

[18]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[19]  Ted Belytschko,et al.  Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .

[20]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[21]  Nils-Erik Wiberg,et al.  An Efficient Postprocessing Technique for Stress Problems Based on Superconvergent Derivatives and Equilibrium , 1992 .

[22]  J. N. Reddy,et al.  Note on an approximate method for computing consistent conjugate stresses in elastic finite elements , 1973 .

[23]  Nils-Erik Wiberg,et al.  Formulation and solution of hierarchical finite element equations , 1988 .