Fourier analysis on finite Abelian groups: some graphical applications

A survey of basic techniques of Fourier analysis on a finite Abelian group Q with subsequent applications in graph theory. In particular, evaluations of the Tutte polynomial of a graph G in terms of cosets of the Q-flows (or dually Q-tensions) of G. Other applications to spanning trees of Cayley graphs and group-valued models on phylogenetic trees are also used to illustrate methods.

[1]  A. L.,et al.  A FOURIER INVERSION FORMULA FOR EVOLUTIONARY TREES , 1992 .

[2]  László A. Székely,et al.  Fourier Calculus on Evolutionary Trees , 1993 .

[3]  Jay A. Wood Duality for modules over finite rings and applications to coding theory , 1999 .

[4]  Noga Alon,et al.  Colorings and orientations of graphs , 1992, Comb..

[5]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[6]  Norman Biggs Algebraic Graph Theory: Index , 1974 .

[7]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[8]  T. Hawkes,et al.  Rings, Modules and Linear Algebra. , 1972 .

[9]  G. Farr A generalization of the Whitney rank generating function , 1993 .

[10]  N. Alon,et al.  Graph Products, Fourier Analysis and Spectral Techniques , 2004 .

[11]  Alexander Pott,et al.  Nonlinear functions in abelian groups and relative difference sets , 2004, Discret. Appl. Math..

[12]  Noga Alon,et al.  A Note on Graph Colorings and Graph Polynomials , 1997, J. Comb. Theory, Ser. B.

[13]  D. J. A. Welsha,et al.  The Potts model and the Tutte polynomial , 2000 .

[14]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[15]  Andrew J. Goodall,et al.  Some new evaluations of the Tutte polynomial , 2006, J. Comb. Theory, Ser. B.

[16]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[17]  Norman Biggs,et al.  On the duality of interaction models , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  D. Vertigan Latroids and their representation by codes over modules , 2003 .

[19]  S. Evans Fourier Analysis and Phylogenetic Trees , 2002 .

[20]  P. Rosenstiehl,et al.  On the Principal Edge Tripartition of a Graph , 1978 .

[21]  Michael D. Hendy,et al.  A Framework for the Quantitative Study of Evolutionary Trees , 1989 .

[22]  Hanfried Lenz,et al.  Design theory , 1985 .

[23]  A. Goodall,et al.  Graph polynomials and the discrete Fourier transform , 2004 .

[24]  Graham Farr TUTTE-WHITNEY POLYNOMIALS: SOME HISTORY AND GENERALIZATIONS , 2007 .

[25]  G. Kalai,et al.  Threshold Phenomena and Influence , 2005 .

[26]  K. Williams,et al.  Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.

[27]  Dominic Welsh,et al.  The Tutte polynomial , 1999, Random Struct. Algorithms.

[28]  Siu Lun Ma,et al.  A survey of partial difference sets , 1994, Des. Codes Cryptogr..

[29]  庄司 一郎,et al.  Statistics of Two-Dimensional Lattices II , 1955 .

[30]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[31]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[32]  Yuri Matiyasevich Some probabilistic restatements of the Four Color Conjecture , 2004 .