GAME CHARACTERIZATIONS AND LOWER CONES IN THE WEIHRAUCH DEGREES

We introduce a parametrized version of the Wadge game for functions and show that each lower cone in the Weihrauch degrees is characterized by such a game. These parametrized Wadge games subsume the original Wadge game, the eraser and backtrack games as well as Semmes’s tree games. In particular, we propose that the lower cones in the Weihrauch degrees are the answer to Andretta’s question on which classes of functions admit game characterizations. We then discuss some applications of such parametrized Wadge games. Using machinery from Weihrauch reducibility theory, we introduce games characterizing every (transfinite) level of the Baire hierarchy via an iteration of a pruning derivative on countably branching trees.

[1]  Raphaël Carroy A quasi-order on continuous functions , 2013, J. Symb. Log..

[2]  Arno Pauly,et al.  Towards Synthetic Descriptive Set Theory: An instantiation with represented spaces , 2013, ArXiv.

[3]  Yann Pequignot,et al.  A Wadge hierarchy for second countable spaces , 2015, Arch. Math. Log..

[4]  Matthias Schröder,et al.  Extended admissibility , 2002, Theor. Comput. Sci..

[5]  Arno Pauly,et al.  A comparison of concepts from computable analysis and effective descriptive set theory , 2014, Mathematical Structures in Computer Science.

[6]  Klaus Weihrauch,et al.  The Computable Multi-Functions on Multi-represented Sets are Closed under Programming , 2008, J. Univers. Comput. Sci..

[7]  Kojiro Higuchi,et al.  The degree structure of Weihrauch-reducibility , 2010, Log. Methods Comput. Sci..

[8]  K. Weihrauch The Degrees of Discontinuity of some Translators Between Representations of the Real Numbers , 1992 .

[9]  Jacques Duparc,et al.  Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.

[10]  Rupert Hölzl,et al.  Probabilistic computability and choice , 2013, Inf. Comput..

[11]  Luca Motto Ros,et al.  Bad Wadge-like reducibilities on the Baire space , 2012, 1212.3005.

[12]  Lawrence S. Moss,et al.  On the Foundations of Corecursion , 1997, Log. J. IGPL.

[13]  Mathieu Hoyrup Results in descriptive set theory on some represented spaces , 2017, ArXiv.

[14]  F. Honsell,et al.  Set theory with free construction principles , 1983 .

[15]  Robert van Wesep,et al.  Wadge Degrees and Projective Ordinals: The Cabal Seminar, Volume II: Wadge degrees and descriptive set theory , 1978 .

[16]  Matthew de Brecht Levels of discontinuity, limit-computability, and jump operators , 2014, Logic, Computation, Hierarchies.

[17]  J. Remmel,et al.  Recursively presented games and strategies , 1992 .

[18]  Arno Pauly,et al.  Descriptive Set Theory in the Category of Represented Spaces , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[19]  Eike Neumann,et al.  L O ] 1 7 M ar 2 01 7 A topological view on algebraic computation models , 2018 .

[20]  Brian Semmes Multitape Games , .

[21]  Raphaël Carroy Playing in the first Baire class , 2014, Math. Log. Q..

[22]  Peter Hertling,et al.  Unstetigkeitsgrade von Funktionen in der effektiven Analysis , 1996 .

[23]  Alessandro Andretta The SLO Principle and the Wadge hierarchy , 2007 .

[24]  K. Weihrauch The TTE-Interpretation of Three Hierarchies of Omniscience Principles , 1992 .

[25]  Luca Motto Ros Game representations of classes of piecewise definable functions , 2011, Math. Log. Q..

[26]  A. Kechris Classical descriptive set theory , 1987 .

[27]  Vasco Brattka,et al.  Effective Choice and Boundedness Principles in Computable Analysis , 2009, The Bulletin of Symbolic Logic.

[28]  Arno Pauly,et al.  On the algebraic structure of Weihrauch degrees , 2016, Log. Methods Comput. Sci..

[29]  Arno Pauly,et al.  Weihrauch Degrees of Finding Equilibria in Sequential Games , 2014, CiE.

[30]  Arno Pauly Computable metamathematics and its application to game theory , 2012 .

[31]  William W. Wadge,et al.  Reducibility and Determinateness on the Baire Space , 1982 .

[32]  Alberto Marcone,et al.  How Incomputable is the Separable Hahn-Banach Theorem? , 2008, CCA.

[33]  Arno Pauly,et al.  Relative computability and uniform continuity of relations , 2011, J. Log. Anal..

[34]  Victor L. Selivanov,et al.  Hyperprojective hierarchy of qcb0-spaces , 2014, De Computis.

[35]  Alberto Marcone,et al.  The Bolzano-Weierstrass Theorem is the jump of Weak Kőnig's Lemma , 2011, Ann. Pure Appl. Log..

[36]  B. T. Semmes,et al.  A game for the Borel functions , 2009 .

[37]  Arno Pauly,et al.  Game Characterizations and Lower Cones in the Weihrauch Degrees , 2015, CiE.

[38]  Philipp Schlicht,et al.  Wadge-like reducibilities on arbitrary quasi-Polish spaces , 2012, Mathematical Structures in Computer Science.

[39]  Luca Motto Ros,et al.  Borel-amenable reducibilities for sets of reals , 2008, The Journal of Symbolic Logic.

[40]  V. Brattka,et al.  Weihrauch Degrees, Omniscience Principles and Weak Computability , 2009 .