Functional stepped surfaces, flips, and generalized substitutions

A substitution is a non-erasing morphism of the free monoid. The notion of multidimensional substitution of non-constant length acting on multidimensional words is proved to be well-defined on the set of two-dimensional words related to discrete approximations of irrational planes. Such a multidimensional substitution can be associated with any usual unimodular substitution. The aim of this paper is to extend the domain of definition of such multidimensional substitutions to functional stepped surfaces. One central tool for this extension is the notion of flips acting on tilings by lozenges of the plane.

[1]  Pierre Arnoux,et al.  Higher dimensional extensions of substitutions and their dual maps , 2001 .

[2]  Pierre Arnoux,et al.  Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions , 2002 .

[3]  Jean-Pierre Reveillès,et al.  Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .

[4]  Damien Jamet,et al.  Discrete Surfaces and Infinite Smooth Words , 2005 .

[5]  Atsushi Imiya,et al.  Combinatorial Topologies for Discrete Planes , 2003, DGCI.

[6]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[7]  Jean-Marc Chassery,et al.  Discrete Surface Segmentation into Discrete Planes , 2004, IWCIA.

[8]  Laurent Vuillon,et al.  Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..

[9]  Shunji Ito,et al.  Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions , 2006 .

[10]  Thomas Fernique,et al.  Bidimensional Sturmian Sequences and Substitutions , 2005, Developments in Language Theory.

[11]  Azriel Rosenfeld,et al.  Digital straightness - a review , 2004, Discret. Appl. Math..

[12]  Damien Jamet On the Language of Standard Discrete Planes and Surfaces , 2004, IWCIA.

[13]  Jean Françon Sur la topologie d'un plan arithmétique , 1996, Theor. Comput. Sci..

[14]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[15]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[16]  Fernique Thomas,et al.  MULTIDIMENSIONAL STURMIAN SEQUENCES AND GENERALIZED SUBSTITUTIONS , 2006 .

[17]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[18]  Atsushi Imiya,et al.  Naive Planes as Discrete Combinatorial Surfaces , 2000, DGCI.

[19]  Jean Françon On the topology of an arithmetic plane. , 1996 .

[20]  J. Allouche Algebraic Combinatorics on Words , 2005 .

[21]  Azriel Rosenfeld,et al.  Surfaces in Three-Dimensional Digital Images , 1981, Inf. Control..

[22]  Reinhard Klette,et al.  Digital planarity - A review , 2007, Discret. Appl. Math..

[23]  Pierre Arnoux,et al.  Generalized Substitutions and Stepped Surfaces , 2005 .

[24]  Jean Berstel Review of "Automatic sequences: theory, applications, generalizations" by Jean-Paul Allouche and Jeffrey Shallit. Cambridge University Press. , 2004, SIGA.

[25]  Makoto Ohtsuki,et al.  Parallelogram Tilings and Jacobi-Perron Algorithm , 1994 .

[26]  Pierre Arnoux,et al.  Two-dimensional iterated morphisms and discrete planes , 2004, Theor. Comput. Sci..

[27]  Makoto Ohtsuki,et al.  Modified Jacobi-Perron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms , 1993 .