Simulating Liquids on Dynamically Warping Grids

We introduce dynamically warping grids for adaptive liquid simulation. Our primary contributions are a strategy for dynamically deforming regular grids over the course of a simulation and a method for efficiently utilizing these deforming grids for liquid simulation. Prior work has shown that unstructured grids are very effective for adaptive fluid simulations. However, unstructured grids often lead to complicated implementations and a poor cache hit rate due to inconsistent memory access. Regular grids, on the other hand, provide a fast, fixed memory access pattern and straightforward implementation. Our method combines the advantages of both: we leverage the simplicity of regular grids while still achieving practical and controllable spatial adaptivity. We demonstrate that our method enables adaptive simulations that are fast, flexible, and robust to null-space issues. At the same time, our method is simple to implement and takes advantage of existing highly-tuned algorithms.

[1]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[2]  Markus Gross,et al.  A system for retargeting of streaming video , 2009, SIGGRAPH 2009.

[3]  M. Gross,et al.  Nonlinear disparity mapping for stereoscopic 3D , 2010, ACM Trans. Graph..

[4]  Ronald Fedkiw,et al.  Efficient simulation of large bodies of water by coupling two and three dimensional techniques , 2006, ACM Trans. Graph..

[5]  M. Gross,et al.  Physics-inspired topology changes for thin fluid features , 2010, ACM Trans. Graph..

[6]  Jessica K. Hodgins,et al.  A point-based method for animating incompressible flow , 2009, SCA '09.

[7]  Eugene Fiume,et al.  Fluid simulation using Laplacian eigenfunctions , 2012, TOGS.

[8]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[9]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[10]  Matthias Müller,et al.  Real-time Eulerian water simulation using a restricted tall cell grid , 2011, ACM Trans. Graph..

[11]  Eftychios Sifakis,et al.  SPGrid: a sparse paged grid structure applied to adaptive smoke simulation , 2014, ACM Trans. Graph..

[12]  R. Bridson,et al.  Matching fluid simulation elements to surface geometry and topology , 2010, ACM Trans. Graph..

[13]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, SIGGRAPH 2010.

[14]  Duc Quang Nguyen,et al.  Directable photorealistic liquids , 2004, SCA '04.

[15]  Eftychios Sifakis,et al.  A scalable schur-complement fluids solver for heterogeneous compute platforms , 2016, ACM Trans. Graph..

[16]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes , 2014, IEEE Transactions on Visualization and Computer Graphics.

[17]  Yoshinori Dobashi,et al.  A Fast Simulation Method Using Overlapping Grids for Interactions between Smoke and Rigid Objects , 2008, Comput. Graph. Forum.

[18]  Theodore Kim,et al.  Dispersion kernels for water wave simulation , 2016, ACM Trans. Graph..

[19]  Renato Pajarola,et al.  Adaptive Sampling and Rendering of Fluids on the GPU , 2008, VG/PBG@SIGGRAPH.

[20]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[21]  J. Owen,et al.  Adaptive Smoothed Particle Hydrodynamics: Methodology. II. , 1995, astro-ph/9512078.

[22]  Ronald Fedkiw,et al.  Codimensional surface tension flow on simplicial complexes , 2014, ACM Trans. Graph..

[23]  Colin B. Macdonald,et al.  Level Set Equations on Surfaces via the Closest Point Method , 2008, J. Sci. Comput..

[24]  Frank Losasso,et al.  A fast and accurate semi-Lagrangian particle level set method , 2005 .

[25]  Christopher Batty,et al.  A cell-centred finite volume method for the Poisson problem on non-graded quadtrees with second order accurate gradients , 2017, J. Comput. Phys..

[26]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[27]  Markus H. Gross,et al.  Two-scale particle simulation , 2011, ACM Trans. Graph..

[28]  Dinesh K. Pai,et al.  Eulerian-on-lagrangian simulation , 2013, TOGS.

[29]  Manuel Menezes de Oliveira Neto,et al.  Efficient Smoke Simulation on Curvilinear Grids , 2013, Comput. Graph. Forum.

[30]  James F. O'Brien,et al.  Eurographics/acm Siggraph Symposium on Computer Animation (2007) Liquid Simulation on Lattice-based Tetrahedral Meshes , 2022 .

[31]  Matthias Müller,et al.  Fast and robust tracking of fluid surfaces , 2009, SCA '09.

[32]  Robert Bridson,et al.  Detailed water with coarse grids , 2014, ACM Trans. Graph..

[33]  A. W. Marshall Norms and inequalities for condition numbers, III* , 1973 .

[34]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[35]  Robert Bridson,et al.  Spatially adaptive FLIP fluid simulations in bifrost , 2016, SIGGRAPH Talks.

[36]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[37]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[38]  Eftychios Sifakis,et al.  Power diagrams and sparse paged grids for high resolution adaptive liquids , 2017, ACM Trans. Graph..

[39]  Huamin Wang,et al.  Animating bubble interactions in a liquid foam , 2012, ACM Trans. Graph..

[40]  M. Lastiwka,et al.  Adaptive particle distribution for smoothed particle hydrodynamics , 2005 .

[41]  Ronald Fedkiw,et al.  Chimera grids for water simulation , 2013, SCA '13.

[42]  Kenny Erleben,et al.  Mathematical foundation of the optimization-based fluid animation method , 2011, SCA '11.

[43]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, ACM Trans. Graph..

[44]  Eitan Grinspun,et al.  Double bubbles sans toil and trouble , 2015, ACM Trans. Graph..

[45]  Rüdiger Westermann,et al.  Narrow Band FLIP for Liquid Simulations , 2016, Comput. Graph. Forum.

[46]  David R. Hill,et al.  OpenVDB: an open-source data structure and toolkit for high-resolution volumes , 2013, SIGGRAPH '13.

[47]  Christopher Batty,et al.  Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids , 2010, Comput. Graph. Forum.

[48]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[49]  Dimitris N. Metaxas,et al.  Controlling fluid animation , 1997, Proceedings Computer Graphics International.

[50]  Mathieu Desbrun,et al.  Power particles , 2015, ACM Trans. Graph..

[51]  Daniel Cohen-Or,et al.  Feature-aware texturing , 2006, EGSR '06.

[52]  Ronald Fedkiw,et al.  A new grid structure for domain extension , 2013, ACM Trans. Graph..

[53]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[54]  James F. O'Brien,et al.  Simulating liquids and solid-liquid interactions with lagrangian meshes , 2013, TOGS.

[55]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[56]  Ken Museth,et al.  Large scale simulation and surfacing of water and ice effects in Dragons 2 , 2014, SIGGRAPH '14.

[57]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[58]  Rüdiger Westermann,et al.  Large-Scale Liquid Simulation on Adaptive Hexahedral Grids , 2014, IEEE Transactions on Visualization and Computer Graphics.

[59]  Ignacio Llamas,et al.  Simulation of bubbles in foam with the volume control method , 2007, ACM Trans. Graph..

[60]  Jonathan Richard Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, ACM Trans. Graph..

[61]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, ACM Trans. Graph..

[62]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, ACM Trans. Graph..

[63]  Frédéric H. Pighin,et al.  Extended Galilean invariance for adaptive fluid simulation , 2004, SCA '04.

[64]  Markus H. Gross,et al.  A system for retargeting of streaming video , 2009, ACM Trans. Graph..

[65]  Huamin Wang,et al.  Water drops on surfaces , 2005, ACM Trans. Graph..

[66]  Ronald Fedkiw,et al.  A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics , 2013, SCA '13.

[67]  Christopher Wojtan,et al.  A Dimension‐reduced Pressure Solver for Liquid Simulations , 2015, Comput. Graph. Forum.

[68]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[69]  Chang-Hun Kim,et al.  Bubbles alive , 2008, ACM Trans. Graph..

[70]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[71]  Andrew Lewis,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH '06.

[72]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..