Quantum Circuits with Classically Simulable Operator Scrambling.

We introduce a new family of quantum circuits for which the scrambling of a subspace of nonlocal operators is classically simulable. We call these circuits "super-Clifford circuits" since the Heisenberg time evolution of these operators corresponds to Clifford evolution in operator space. Thus we are able to classically simulate the time evolution of certain single Pauli strings into operators with operator entanglement that grows linearly with the number of qubits. These circuits provide a new technique for studying scrambling in systems with a large number of qubits, and are an explicit counter example to the intuition that classical simulability implies the absence of scrambling.

[1]  Tomaz Prosen,et al.  Operator space entanglement entropy in a transverse Ising chain , 2007, 0706.2480.

[2]  Daniel A. Roberts,et al.  Operator growth in the SYK model , 2018, Journal of High Energy Physics.

[3]  S. Sachdev,et al.  Thermal diffusivity and chaos in metals without quasiparticles , 2017, 1705.07896.

[4]  J. Maldacena,et al.  Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space , 2016, 1606.01857.

[5]  K. Jensen Chaos in AdS_{2} Holography. , 2016, Physical review letters.

[6]  L. Susskind Complexity and Newton's Laws , 2019, Frontiers in Physics.

[7]  Mike Blake,et al.  Universal Charge Diffusion and the Butterfly Effect in Holographic Theories. , 2016, Physical review letters.

[8]  Hyunseok Lee,et al.  A quantum hydrodynamical description for scrambling and many-body chaos , 2017, Journal of High Energy Physics.

[9]  Henry W. Lin,et al.  Symmetries near the horizon , 2019, Journal of High Energy Physics.

[10]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[11]  D. Huse,et al.  Operator Spreading and the Emergence of Dissipative Hydrodynamics under Unitary Evolution with Conservation Laws , 2017, Physical Review X.

[12]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.

[13]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[14]  L. Susskind Why do Things Fall , 2018, 1802.01198.

[15]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[16]  Sašo Grozdanov,et al.  Many-body chaos and energy dynamics in holography , 2018, Journal of High Energy Physics.

[17]  Sašo Grozdanov,et al.  Black Hole Scrambling from Hydrodynamics. , 2017, Physical review letters.

[18]  Hong Liu,et al.  Void formation in operator growth, entanglement, and unitarity , 2019, Journal of High Energy Physics.

[19]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[20]  A. Georges,et al.  Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography , 2016, 1612.00849.

[21]  D. Huse,et al.  Coarse-grained dynamics of operator and state entanglement , 2018, 1803.00089.

[22]  Daniel A. Roberts,et al.  Localized shocks , 2014, 1409.8180.

[23]  F. Pollmann,et al.  Diffusive Hydrodynamics of Out-of-Time-Ordered Correlators with Charge Conservation , 2017, Physical Review X.

[24]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[25]  T. Zhou,et al.  Operator scrambling and quantum chaos , 2018, 1804.08655.

[26]  L. Ioffe,et al.  Microscopic model of quantum butterfly effect: out-of-time-order correlators and traveling combustion waves , 2016, 1609.01251.

[27]  S. Sachdev,et al.  Quantum chaos on a critical Fermi surface , 2016, Proceedings of the National Academy of Sciences.

[28]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[29]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[30]  B. Swingle,et al.  Slow scrambling in disordered quantum systems , 2016, 1608.03280.

[31]  X. Qi,et al.  Quantum epidemiology: operator growth, thermal effects, and SYK , 2018, Journal of High Energy Physics.

[32]  S. Sondhi,et al.  Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws , 2017, 1705.08910.

[33]  X. Qi,et al.  Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models , 2016, 1609.07832.

[34]  A. Kitaev,et al.  The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual , 2017, 1711.08467.

[35]  Jeongwan Haah,et al.  Operator Spreading in Random Unitary Circuits , 2017, 1705.08975.

[36]  Hong Liu,et al.  A dynamical mechanism for the Page curve from quantum chaos , 2020, Journal of High Energy Physics.

[37]  S. Gopalakrishnan,et al.  Facilitated quantum cellular automata as simple models with non-thermal eigenstates and dynamics , 2018, Quantum Science and Technology.