Using Intent Information to Model User Behavior in Diversified Search

A result page of a modern commercial search engine often contains documents of different types targeted to satisfy different user intents (news, blogs, multimedia). When evaluating system performance and making design decisions we need to better understand user behavior on such result pages. To address this problem various click models have previously been proposed. In this paper we focus on result pages containing fresh results and propose a way to model user intent distribution and bias due to different document presentation types. To the best of our knowledge this is the first work that successfully uses intent and layout information to improve existing click models.

[1]  Yuchen Zhang,et al.  Characterizing search intent diversity into click models , 2011, WWW.

[2]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[3]  Qiang Yang,et al.  Beyond ten blue links: enabling user click modeling in federated web search , 2012, WSDM '12.

[4]  Fernando Diaz,et al.  Sources of evidence for vertical selection , 2009, SIGIR.

[5]  Robert Tibshirani,et al.  An Introduction to the Bootstrap CHAPMAN & HALL/CRC , 1993 .

[6]  Fernando Diaz,et al.  Vertical selection in the presence of unlabeled verticals , 2010, SIGIR '10.

[7]  Olivier Chapelle,et al.  Expected reciprocal rank for graded relevance , 2009, CIKM.

[8]  Tetsuya Sakai,et al.  Evaluating diversified search results using per-intent graded relevance , 2011, SIGIR.

[9]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[10]  Andrew Trotman,et al.  Sound and complete relevance assessment for XML retrieval , 2008, TOIS.

[11]  Yuchen Zhang,et al.  User-click modeling for understanding and predicting search-behavior , 2011, KDD.

[12]  Benjamin Piwowarski,et al.  A user browsing model to predict search engine click data from past observations. , 2008, SIGIR '08.

[13]  Olivier Chapelle,et al.  A dynamic bayesian network click model for web search ranking , 2009, WWW '09.

[14]  Charles L. A. Clarke,et al.  A comparative analysis of cascade measures for novelty and diversity , 2011, WSDM '11.

[15]  Nick Craswell,et al.  An experimental comparison of click position-bias models , 2008, WSDM '08.

[16]  Chao Liu,et al.  Efficient multiple-click models in web search , 2009, WSDM '09.

[17]  Filip Radlinski,et al.  Improving personalized web search using result diversification , 2006, SIGIR.

[18]  Fernando Diaz,et al.  Learning to aggregate vertical results into web search results , 2011, CIKM '11.

[19]  Chao Liu,et al.  Click chain model in web search , 2009, WWW '09.

[20]  Thorsten Joachims,et al.  Accurately interpreting clickthrough data as implicit feedback , 2005, SIGIR '05.

[21]  Fernando Diaz,et al.  A Methodology for Evaluating Aggregated Search Results , 2011, ECIR.

[22]  Charles L. A. Clarke,et al.  Novelty and diversity in information retrieval evaluation , 2008, SIGIR '08.

[23]  Alistair Moffat,et al.  Rank-biased precision for measurement of retrieval effectiveness , 2008, TOIS.

[24]  Pavel Serdyukov,et al.  Recency ranking by diversification of result set , 2011, CIKM '11.

[25]  Sreenivas Gollapudi,et al.  Diversifying search results , 2009, WSDM '09.

[26]  Chao Liu,et al.  BBM: bayesian browsing model from petabyte-scale data , 2009, KDD.

[27]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[28]  Tapas Kanungo,et al.  On composition of a federated web search result page: using online users to provide pairwise preference for heterogeneous verticals , 2011, WSDM '11.

[29]  Susan T. Dumais,et al.  Optimizing search by showing results in context , 2001, CHI.