Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems

The stochastic collocation method (Babuška et al. in SIAM J Numer Anal 45(3):1005–1034, 2007; Nobile et al. in SIAM J Numer Anal 46(5):2411–2442, 2008a; SIAM J Numer Anal 46(5):2309–2345, 2008b; Xiu and Hesthaven in SIAM J Sci Comput 27(3):1118–1139, 2005) has recently been applied to stochastic problems that can be transformed into parametric systems. Meanwhile, the reduced basis method (Maday et al. in Comptes Rendus Mathematique 335(3):289–294, 2002; Patera and Rozza in Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu, 2007; Rozza et al. in Arch Comput Methods Eng 15(3):229–275, 2008), primarily developed for solving parametric systems, has been recently used to deal with stochastic problems (Boyaval et al. in Comput Methods Appl Mech Eng 198(41–44):3187–3206, 2009; Arch Comput Methods Eng 17:435–454, 2010). In this work, we aim at comparing the performance of the two methods when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria are considered: (1), convergence results of the approximation error; (2), computational costs for both offline construction and online evaluation. Numerical experiments are performed for problems from low dimensions $$O(1)$$O(1) to moderate dimensions $$O(10)$$O(10) and to high dimensions $$O(100)$$O(100). The main result stemming from our comparison is that the reduced basis method converges better in theory and faster in practice than the stochastic collocation method for smooth problems, and is more suitable for large scale and high dimensional stochastic problems when considering computational costs.

[1]  Menner A Tatang,et al.  Direct incorporation of uncertainty in chemical and environmental engineering systems , 1995 .

[2]  N. Nguyen,et al.  A general multipurpose interpolation procedure: the magic points , 2008 .

[3]  Jan S. Hesthaven,et al.  On the use of ANOVA expansions in reduced basis methods for high-dimensional parametric partial differential equations , 2011 .

[4]  A. Quarteroni,et al.  Numerical solution of parametrized Navier–Stokes equations by reduced basis methods , 2007 .

[5]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[6]  George E. Karniadakis,et al.  The multi-element probabilistic collocation method (ME-PCM): Error analysis and applications , 2008, J. Comput. Phys..

[7]  D. Xiu Fast numerical methods for stochastic computations: A review , 2009 .

[8]  Sabine Fenstermacher,et al.  Numerical Approximation Of Partial Differential Equations , 2016 .

[9]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[10]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[11]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[12]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[13]  Shun Zhang,et al.  Ecient greedy algorithms for successive constraints methods with high-dimensional parameters , 2011 .

[14]  Raul Tempone,et al.  An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data , 2007 .

[15]  R. Tempone,et al.  ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS , 2012 .

[16]  Endre Süli,et al.  Sparse Grids for Higher Dimensional Problems , 2006 .

[17]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[18]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[19]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[20]  Gianluigi Rozza Shape design by optimal flow control and reduced basis techniques , 2005 .

[21]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[22]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[23]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[24]  Gianluigi Rozza,et al.  A weighted empirical interpolation method: a priori convergence analysis and applications , 2014 .

[25]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[26]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[27]  Gianluigi Rozza,et al.  Certified reduced basis approximation for parametrized partial differential equations and applications , 2011 .

[28]  Jan S. Hesthaven,et al.  Certified Reduced Basis Methods and Output Bounds for the Harmonic Maxwell's Equations , 2010, SIAM J. Sci. Comput..

[29]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[30]  Y. Maday,et al.  Reduced Basis Techniques for Stochastic Problems , 2010, 1004.0357.

[31]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[32]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[33]  Anthony T. Patera,et al.  Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations , 2002 .

[34]  Barbara I. Wohlmuth,et al.  Uncertainty Modeling Using Fuzzy Arithmetic Based On Sparse Grids: Applications To Dynamic Systems , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[35]  Anthony T. Patera,et al.  A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations , 2002, J. Sci. Comput..

[36]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[37]  M. Griebel Sparse Grids and Related Approximation Schemes for Higher Dimensional Problems , 2006 .

[38]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[39]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[40]  Guang Lin,et al.  An adaptive ANOVA-based data-driven stochastic method for elliptic PDEs with random coefficient , 2014 .

[41]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[42]  Gianluigi Rozza,et al.  A Weighted Reduced Basis Method for Elliptic Partial Differential Equations with Random Input Data , 2013, SIAM J. Numer. Anal..

[43]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[44]  Ronald DeVore,et al.  Greedy Algorithms for Reduced Bases in Banach Spaces , 2012, Constructive Approximation.

[45]  A. Fowler,et al.  Acid polishing of lead glass , 2011 .

[46]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[47]  Alfio Quarteroni,et al.  Accurate and efficient evaluation of failure probability for partial different equations with random input data , 2013 .

[48]  A. Nouy Recent Developments in Spectral Stochastic Methods for the Numerical Solution of Stochastic Partial Differential Equations , 2009 .

[49]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[50]  Anthony T. Patera,et al.  A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient , 2009 .

[51]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[52]  Shun Zhang,et al.  On the Use of ANOVA Expansions in Reduced Basis Methods for Parametric Partial Differential Equations , 2016, J. Sci. Comput..

[53]  Gianluigi Rozza,et al.  A Reduced Basis Model with Parametric Coupling for Fluid-Structure Interaction Problems , 2012, SIAM J. Sci. Comput..

[54]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[55]  R. Tempone,et al.  Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .

[56]  Zhiwen Zhang,et al.  A Data-Driven Stochastic Method for Elliptic PDEs with Random Coefficients , 2013, SIAM/ASA J. Uncertain. Quantification.

[57]  Xiang Ma,et al.  An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations , 2009, J. Comput. Phys..