Air-bubble-triggered drop formation in microfluidics.

In microfluidic devices, droplets are normally formed using T-junction or flow focus mechanisms. While both afford a high degree of control over drop formation, they are limited in maximum production rate by the jetting transition. Here, we introduce a new drop formation mechanism that is not limited by jetting, allowing much faster drop production.

[1]  Andrew D Griffiths,et al.  Miniaturizing chemistry and biology in microdroplets. , 2007, Chemical communications.

[2]  Liang-Yin Chu,et al.  Controllable monodisperse multiple emulsions. , 2007, Angewandte Chemie.

[3]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[4]  Robert F Shepherd,et al.  Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[5]  D. Weitz,et al.  Dripping to jetting transitions in coflowing liquid streams. , 2007, Physical review letters.

[6]  Alberto Fernandez-Nieves,et al.  Absolute instability of a liquid jet in a coflowing stream. , 2008, Physical review letters.

[7]  P. Umbanhowar,et al.  Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream , 2000 .

[8]  Dhananjay Dendukuri,et al.  Controlled synthesis of nonspherical microparticles using microfluidics. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[9]  Armand Ajdari,et al.  Stability of a jet in confined pressure-driven biphasic flows at low reynolds numbers. , 2007, Physical review letters.

[10]  D. Weitz,et al.  Monodisperse Double Emulsions Generated from a Microcapillary Device , 2005, Science.

[11]  G. Whitesides,et al.  Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. , 2005, Angewandte Chemie.

[12]  Jean-Louis Viovy,et al.  Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells , 2008, Proceedings of the National Academy of Sciences.

[13]  Annie Colin,et al.  Stability of parallel flows in a microchannel after a T junction. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Armand Ajdari,et al.  Suppression of instabilities in multiphase flow by geometric confinement. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  George M. Whitesides,et al.  Erratum: Formation of droplets and bubbles in a microfluidic T-junction - Scaling and mechanism of break-up (Lab on a Chip-Miniaturisation for Chemistry and Biology (2006) 6 (437) DOI: 10.1039/b510841a) , 2006 .

[16]  Daniel T. Chiu,et al.  Chemistry and biology in femtoliter and picoliter volume droplets. , 2009, Accounts of chemical research.

[17]  T. Cubaud,et al.  Capillary threads and viscous droplets in square microchannels , 2008 .

[18]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[19]  R. K. Shah,et al.  Janus particles templated from double emulsion droplets generated using microfluidics. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[20]  Minoru Seki,et al.  Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[21]  A. Abate,et al.  Ultrahigh-throughput screening in drop-based microfluidics for directed evolution , 2010, Proceedings of the National Academy of Sciences.

[22]  A. Abate,et al.  High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. , 2009, Small.

[23]  Christoph A. Merten,et al.  High-throughput screening of enzymes by retroviral display using droplet-based microfluidics. , 2010, Chemistry & biology.

[24]  Liang-Yin Chu,et al.  Designer emulsions using microfluidics , 2008 .

[25]  Toru Torii,et al.  Synthesis of Monodisperse Bicolored Janus Particles with Electrical Anisotropy Using a Microfluidic Co‐Flow System , 2006 .