Technologies and Designs for Electronic Nanocomputers

Diverse space-related applications have been proposed for microscopic and sub-microscopic structures, mechanisms, and 'organisms'. To govern their functions, many of these tiny systems will require even smaller, nanometer-scale programmable computers, i.e. 'nanocomputers' on-board. This paper provides an overview of the results of a nearly two-year study of the technologies and designs that presently are in development for electronic nanocomputers. Strengths and weaknesses of the various technologies and designs are discussed, as well as promising directions for remedying some of the present research issues in this area. The presentation is a synopsis of a longer MITRE review article on the same subject.

[1]  R. Merkle Reversible electronic logic using switches , 1993 .

[2]  S. Cohen,et al.  The manipulation of genes. , 1975, Scientific American.

[3]  G. Whitesides,et al.  Fabrication of patterned, electrically conducting polypyrrole using a self-assembled monolayer : a route to all-organic circuits , 1995 .

[4]  C. Sah Fundamentals of Solid State Electronics , 1991 .

[5]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[6]  M. Kastner,et al.  The single-electron transistor , 1992 .

[7]  D. Doddrell,et al.  Conformational equilibria in cyclohexyltrimethylstannane and cyclohexyltrimethylplumbane by low temperature 13C NMR spectroscopy , 1976 .

[8]  P. D. Tougaw,et al.  Bistable saturation in coupled quantum dots for quantum cellular automata , 1993 .

[9]  J. S. Hall Nanocomputers and reversible logic , 1994 .

[10]  Ronnie Mainieri Design Constraints for Nanometer Scale Quantum Computers , 1994 .

[11]  W. Pickett,et al.  Modeling CVD diamond with density functional theory , 1994 .

[12]  Chun-Guey Wu,et al.  Conducting Polyaniline Filaments in a Mesoporous Channel Host , 1994, Science.

[13]  J. Tour,et al.  Extended orthogonally fused conducting oligomers for molecular electronic devices , 1991 .

[14]  Kris Kempa,et al.  Spontaneous polarization of electrons in quantum dashes , 1991 .

[15]  K E Drexler,et al.  Molecular engineering: An approach to the development of general capabilities for molecular manipulation. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Allee,et al.  Selective area oxidation of with an ambient scanning tunneling microscope , 1996 .

[17]  V. Heine,et al.  Quantum mechanics of materials , 1982 .

[18]  P. D. Tougaw,et al.  Quantum cellular automata: the physics of computing with arrays of quantum dot molecules , 1994, Proceedings Workshop on Physics and Computation. PhysComp '94.

[19]  P. Avouris Manipulation of Matter at the Atomic and Molecular Levels , 1995 .

[20]  S. Nes purek,et al.  Electroactive and photochromic molecular materials for wires, switches and memories , 1994, IEEE Engineering in Medicine and Biology Magazine.

[21]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[22]  Christie R. K. Marrian,et al.  Low voltage electron beam lithography in self‐assembled ultrathin films with the scanning tunneling microscope , 1994 .

[23]  W. C. Hittinger Metal-Oxide-Semiconductor Technology , 1973 .

[24]  R. Parr,et al.  Density-functional theory of the electronic structure of molecules. , 1995, Annual review of physical chemistry.

[25]  S. Chou,et al.  Single-electron Coulomb blockade in a nanometer field-effect transistor with a single barrier , 1992 .

[26]  J. Tour,et al.  Are Single Molecular Wires Conducting? , 1996, Science.

[27]  F. G. Heath Large-Scale Integration in Electronics , 1970 .

[28]  A. Maiti,et al.  Growth of carbon nanotubes: a molecular dynamics study , 1995 .

[29]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[30]  Modular Assembly of Surface Heterostructures from Inorganic Clusters and Polyelectrolytes , 1997 .

[31]  Charles L. Seitz,et al.  Engineering limits on computer performance , 1984 .

[32]  R. Landauer,et al.  The Fundamental Physical Limits of Computation. , 1985 .

[33]  Tian,et al.  Electronic conduction through organic molecules. , 1996, Physical review. B, Condensed matter.

[34]  Krieger,et al.  Capacitive nature of atomic-sized structures. , 1995, Physical review. B, Condensed matter.

[35]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[36]  G. Shedd,et al.  The scanning tunneling microscope as a tool for nanofabrication , 1990 .

[37]  Elizabeth C. Behrman,et al.  A Quantum Dot Neural Network , 1996 .

[38]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[39]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[40]  Tommaso Toffoli,et al.  Cellular Automata Machines , 1987, Complex Syst..

[41]  P. Benioff Quantum Mechanical Models of Turing Machines That Dissipate No Energy , 1982 .

[42]  M. Tabib-Azar,et al.  Gallium Arsenide Transistors: Realization Through a Molecularly Designed Insulator , 1994, Science.

[43]  Yasuo Takahashi,et al.  Fabrication of a silicon quantum wire surrounded by silicon dioxide and its transport properties , 1994 .

[44]  The Junction Transistor , 1952 .

[45]  C. Lent Quantum Computation and Its Perspective , 1997 .

[46]  John R. Tucker,et al.  Complementary digital logic based on the ``Coulomb blockade'' , 1992 .

[47]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[48]  박성주,et al.  Overview of Nanoelectronics , 1989 .

[49]  A. Seabaugh,et al.  Nine-state resonant tunneling diode memory , 1992, IEEE Electron Device Letters.

[50]  H. Kuhn Organized monolayer assemblies/spl minus/their role in constructing supramolecular devices and in modeling evolution of early life , 1994 .

[51]  R. Keyes THE FUTURE OF THE TRANSISTOR , 1993 .

[52]  M. Sailor,et al.  Fabrication of Conducting Polymer Interconnects , 1993, Science.

[53]  R. Feynman Simulating physics with computers , 1999 .

[54]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics , 1989 .

[55]  C. H. Bennett,et al.  Quantum Information and Computation , 1995 .

[56]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[57]  A. Aviram Molecular Electronics Science and Technology , 1989 .

[58]  J. Tour,et al.  Iterative Divergent/Convergent Approach to Linear Conjugated Oligomers by Successive Doubling of the Molecular Length: A Rapid Route to a 128Å‐Long Potential Molecular Wire , 1994 .

[59]  Christian Joachim,et al.  Controlled Room-Temperature Positioning of Individual Molecules: Molecular Flexure and Motion , 1996, Science.

[60]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[61]  M. Reed,et al.  Pseudomorphic bipolar quantum resonant-tunneling transistor , 1989 .

[62]  Andrés,et al.  Room-temperature Coulomb blockade from a self-assembled molecular nanostructure. , 1995, Physical review. B, Condensed matter.

[63]  W. Gilbert,et al.  Useful proteins from recombinant bacteria. , 1980, Scientific American.

[64]  K. Mullis The unusual origin of the polymerase chain reaction. , 1990, Scientific American.

[65]  R W Keyes,et al.  What Makes a Good Computer Device? , 1985, Science.

[66]  P. Avouris,et al.  Field-Induced Nanometer- to Atomic-Scale Manipulation of Silicon Surfaces with the STM , 1991, Science.

[67]  J. Lyding,et al.  Nanometer scale patterning and oxidation of silicon surfaces with an ultrahigh vacuum scanning tunneling microscope , 1994 .

[68]  Use of Minimal Free Energy and Self-Assembly To Form Shapes , 1995 .

[69]  R. P. Andres,et al.  Coulomb Staircase at Room Temperature in a Self-Assembled Molecular Nanostructure , 1996, Science.

[70]  A. Aviram Molecules for memory, logic and amplification , 1988 .

[71]  William A. Tolles Nanoscience and nanotechnology in Europe , 1996 .

[72]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[73]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[74]  J. Shapiro,et al.  Transposable genetic elements. , 1980, Scientific American.

[75]  J. Golovchenko,et al.  Demonstration of the tunnel-diode effect on an atomic scale , 1989, Nature.

[76]  Konstantin K. Likharev,et al.  Possible performance of capacitively coupled single‐electron transistors in digital circuits , 1995 .

[77]  R. Feynman,et al.  The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .

[78]  G. Somorjai Surface Reconstruction and Catalysis , 1994 .

[79]  K. Likharev Correlated discrete transfer of single electrons in ultrasmall tunnel junctions , 1988 .

[80]  James Lewis,et al.  Strategies for Molecular Systems Engineering , 1992 .

[81]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[82]  K. J. Gabriel,et al.  Silicon micromechanics: sensors and actuators on a chip , 1990, IEEE Spectrum.

[83]  J. Hopfield,et al.  A Molecular Shift Register Based on Electron Transfer , 1988, Science.

[84]  D. Eigler,et al.  An atomic switch realized with the scanning tunnelling microscope , 1991, Nature.

[85]  F.T. Hong,et al.  Molecular electronics: science and technology for the future , 1994, IEEE Engineering in Medicine and Biology Magazine.

[86]  P. Barth,et al.  Silicon micromechanical devices , 1983 .

[87]  Vwani P. Roychowdhury,et al.  Nanoelectronic Functional Devices , 1994 .

[88]  D. Beratan,et al.  Molecular electronics: observation of molecular rectification. , 1993, Science.

[89]  M. Ratner,et al.  Current‐voltage characteristics of molecular wires: Eigenvalue staircase, Coulomb blockade, and rectification , 1996 .

[90]  R. Bate The quantum-effect device: Tomorrow's transistors , 1988 .

[91]  Yu. G. Krieger Molecular electronics: Current state and future trends , 1993 .

[92]  James H. Luscombe,et al.  Current issues in nanoelectric modelling , 1993 .

[93]  D. Hopwood The genetic programming of industrial microorganisms. , 1981, Scientific American.

[94]  Martin Holland,et al.  Nanolithography with an atomic force microscope for integrated fabrication of quantum electronic devices , 1994 .

[95]  Stephen Y. Chou,et al.  Single hole quantum dot transistors in silicon , 1995 .

[96]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[97]  R. Keyes Power dissipation in information processing. , 1970, Science.

[98]  R. Service Materials Science: Mixing Nanotube Structures to Make a Tiny Switch , 1996, Science.

[99]  Carlo Giovannella,et al.  NANOLITHOGRAPHY: A Borderland between STM, EB, IB, and X-Ray Lithographies , 1994 .

[100]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[101]  R. Landauer Information is physical , 1991 .

[102]  N. Holonyak John Bardeen and the Point‐Contact Transistor , 1992 .

[103]  J. Baggott The Meaning of Quantum Theory: A Guide for Students of Chemistry and Physics , 1992 .

[104]  Gerd K. Binnig,et al.  Scanning Tunneling Microscope , 2020, Definitions.

[105]  P. Avouris,et al.  Negative Differential Resistance on the Atomic Scale: Implications for Atomic Scale Devices , 1989, Science.

[106]  A. Seabaugh,et al.  Coupled-quantum-well field-effect resonant tunneling transistor for multi-valued logic/memory applications , 1994 .

[107]  Writing electronic nanometer structures into porous Si films by scanning tunneling microscopy , 1994 .

[108]  Nanofabrication and rapid imaging with a scanning tunneling microscope , 1994 .

[109]  R. Pool The Children of the STM: The Nobel Prize-winning scanning tunneling microscope has inspired a whole generation of imaging devices that use everything from magnetic forces to sound waves to examine samples. , 1990, Science.

[110]  T. Ma,et al.  Applications and limitations of polymerase chain reaction amplification. , 1995, Chest.

[111]  G. Whitesides,et al.  Self Assembly Through Hydrogen Bonding: Preparation of a Supramolecular Aggregate Composed of Ten Molecules , 1993 .

[112]  Roger Fabian W. Pease,et al.  Lift‐off metallization using poly(methyl methacrylate) exposed with a scanning tunneling microscope , 1988 .

[113]  M. Ancona Design of computationally useful single-electron digital circuits , 1996 .

[114]  T. Mallouk,et al.  ELECTRON TRANSFER IN SELF-ASSEMBLED INORGANIC POLYELECTROLYTE/METAL NANOPARTICLE HETEROSTRUCTURES , 1996 .

[115]  Hans J. Queisser,et al.  The conquest of the microchip , 1988 .

[116]  M. Ratner,et al.  Electron conduction in molecular wires. I. A scattering formalism , 1994 .

[117]  Mark L. Schattenburg,et al.  X-ray lithography from 500 to 30 nm: X-ray nanolithography , 1993, IBM J. Res. Dev..

[118]  G. Whitesides,et al.  Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates , 1995 .

[119]  James Lewis,et al.  Quantum Transistors and Integrated Circuits , 1992 .

[120]  M. Panish Molecular-beam epitaxy , 1989, AT&T Technical Journal.

[121]  Richard J. Lipton,et al.  Speeding up computations via molecular biology , 1995, DNA Based Computers.

[122]  M. Lieberman,et al.  Self-assembly approach to protein design , 1991 .

[123]  Jan M. Rabaey,et al.  Digital Integrated Circuits: A Design Perspective , 1995 .

[124]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[125]  T. A. Michalske,et al.  The interfacial-force microscope , 1992, Nature.

[126]  Eugene A. Irene,et al.  Imaging and modification of Au(111) monatomic steps with atomic force microscopy , 1993 .

[127]  Quantum atom switch: Tunneling of Xe atoms. , 1993 .

[128]  D. Freedman Exploiting the nanotechnology of life. , 1991, Science.

[129]  Noel C. MacDonald,et al.  Integrated micro‐scanning tunneling microscope , 1995 .

[130]  D. Wineland,et al.  The Isolated Electron , 1980 .

[131]  M. Prentiss,et al.  Microlithography by using neutral metastable atoms and self-assembled monolayers , 1995, Science.

[132]  E. Lieb,et al.  Quantum Dots , 2019, Encyclopedia of Color Science and Technology.

[133]  Simple Quantum Models of Coulomb Effects in Semiconductor Nanostructures , 1992 .

[134]  C. Joachim,et al.  Fabrication of submicrometre buried gold - palladium wires on using electron beam lithography , 1996 .

[135]  R W Keyes,et al.  Physical Limits in Semiconductor Electronics , 1977, Science.

[136]  G. Whitesides,et al.  Formation of Monolayers by the Coadsorption of Thiols on Gold: Variation in the Length of the Alkyl Chain , 1989 .

[137]  C. Gerber,et al.  Surface Studies by Scanning Tunneling Microscopy , 1982 .

[138]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[139]  G. Stix Toward “Point One” , 1995 .

[140]  Jacques Weber,et al.  Computer-Aided Molecular Design: Theory and Applications , 1996 .

[141]  B. Su,et al.  Observation of Single-Electron Charging in Double-Barrier Heterostructures , 1992, Science.

[142]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[143]  M. Kanatzidis SPECIAL REPORT: Conductive Polymers , 1990 .

[144]  S. Lloyd Envisioning a quantum supercomputer. , 1994, Science.

[145]  P. Lindenfeld,et al.  The interface of metal-metal multiple bond compounds and organometallic clusters: synthesis and structure of Mo2{.mu.-[(CO)9Co3(.mu.3-CCO2)]}4[(CO)9Co3(.mu.3-CCO2H)]2 and related compounds , 1992 .

[146]  S. Takeda,et al.  Solid neopentane C(CH3)4 as studied by nuclear magnetic resonance A detailed examination of methyl and molecular reorientation in the low temperature phase , 1982 .

[147]  N. C. MacDonald,et al.  Microelectromechanical Scanning Tunneling Microscope , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[148]  A. Lawrence,et al.  Quantum effects, thermal statistics and reliability of nanoscale molecular and semiconductor devices , 1991 .

[149]  Michael W. Geis,et al.  Diamond film semiconductors , 1992 .

[150]  J. Andrade,et al.  Manipulation of Proteins on Mica by Atomic Force Microscopy. , 1992, Langmuir : the ACS journal of surfaces and colloids.

[151]  Supriyo Bandyopadhyay,et al.  Supercomputing with spin-polarized single electrons in a quantum coupled architecture , 1994 .

[152]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[153]  R. Merkle Self replicating systems and molecular manufacturing , 1992 .

[154]  M. Reed Quantum constructions. , 1993, Science.

[155]  Stanley Mazor,et al.  The history of the microcomputer-invention and evolution , 1995, Proc. IEEE.

[156]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[157]  R. Behm,et al.  Adsorbate Covered Metal Surfaces and Reactions on Metal Surfaces , 1992 .

[158]  S. Sze High-speed semiconductor devices , 1990 .

[159]  R. Landauer,et al.  Minimal energy dissipation in logic , 1970 .

[160]  L. Lindoy Marvels of molecular device , 1993, Nature.

[161]  Ari Aviram,et al.  A strategic plan for molecular electronics , 1992 .

[162]  V. Roychowdhury,et al.  Collective computational activity in self-assembled arrays of quantum dots: a novel neuromorphic architecture for nanoelectronics , 1996 .

[163]  Juan R. Granja,et al.  Self-assembling organic nanotubes based on a cyclic peptide architecture , 1994, Nature.

[164]  George M. Whitesides,et al.  Patterning Self-Assembled Monolayers: Applications in Materials Science , 1994 .

[165]  J. Randall A lateral-resonant-tunneling universal quantum-dot cell , 1993 .

[166]  Martin,et al.  Molecular rectifier. , 1993, Physical review letters.

[167]  D. Dwyer,et al.  Surface science of catalysis : in situ probes and reaction kinetics , 1992 .

[168]  H. Fink,et al.  Mechanical and electronic manipulation of nanometer-sized wires , 1994 .

[169]  David L. Goodstein,et al.  Genius: The Life and Science of Richard Feynman, James Gleick. 1992. Pantheon Press, New York, NY. 532 pages. ISBN: 0-679-40836-3. $27.50 , 1994 .

[170]  J. Vinuesa,et al.  Length dependence of the electronic transparence (conductance) of a molecular wire , 1996 .

[171]  S. A. Chalmers,et al.  New Quantum Structures , 1991, Science.

[172]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[173]  M. Ratner,et al.  Electron conduction in molecular wires. II. Application to scanning tunneling microscopy , 1994 .

[174]  K. Eric Drexler,et al.  Nanosystems - molecular machinery, manufacturing, and computation , 1992 .

[175]  A. Korotkov Wireless single‐electron logic biased by alternating electric field , 1995 .

[176]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[177]  Thomas Kwok,et al.  Electromigration and reliability in submicron metallization and multilevel interconnection , 1993 .

[178]  G. Whitesides,et al.  Self-assembled monolayers and multilayers of conjugated thiols, α,ω-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces , 1995 .

[179]  W. Frensley,et al.  Wigner-function model of a resonant-tunneling semiconductor device. , 1987, Physical review. B, Condensed matter.

[180]  G. Whitesides,et al.  Measurements of the Conductivity of Individual 10 Nm Carbon Nanotubes , 1994 .

[181]  J. Meindl Chips for advanced computing , 1987 .

[182]  A. Seabaugh,et al.  Co-integrated resonant tunneling and heterojunction bipolar transistor full adder , 1993, Proceedings of IEEE International Electron Devices Meeting.

[183]  K. Eric Drexler,et al.  Engines of Creation , 1986 .

[184]  J. Luscombe,et al.  Models for nanoelectronic devices , 1990 .

[185]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[186]  C. R. Martin,et al.  Molecular and supermolecular origins of enhanced electric conductivity in template-synthesized polyheterocyclic fibrils. 1. Supermolecular effects , 1991 .

[187]  J. Gimzewski,et al.  ANALYSIS OF LOW-VOLTAGE I(V) CHARACTERISTICS OF A SINGLE C60 MOLECULE , 1995 .

[188]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .

[189]  C. Prater,et al.  Nanowire Array Composites , 1994, Science.

[190]  A. Aviram,et al.  Evidence of switching and rectification by a single molecule effected with a scanning tunneling microscope , 1989 .

[191]  L. Eastman,et al.  Ballistic electrons in semiconductors , 1987 .

[192]  A. Epstein,et al.  Linear-chain conductors , 1979 .

[193]  B. Hasslacher Few Electron Quantum Computing Structures and Lattice Gas Computation , 1992 .

[194]  M. Lutwyche,et al.  A proposal of nanoscale devices based on atom/molecule switching , 1993 .

[195]  Theodore I. Kamins,et al.  Device Electronics for Integrated Circuits , 1977 .

[196]  R. Scholten,et al.  NANOSTRUCTURE FABRICATION VIA DIRECT WRITING WITH ATOMS FOCUSED IN LASER FIELDS , 1994 .

[197]  N. Seeman The use of branched DNA for nanoscale fabrication , 1991 .

[198]  T. D. Schneider,et al.  Sequence logos, machine/channel capacity, Maxwell's demon, and molecular computers: a review of the theory of molecular machines , 1994 .

[199]  M. Reed Observation of Conductance and Room Temperature Coulomb Blockade in a Molecule , 1997 .

[200]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[201]  Yasuo Takahashi,et al.  Fabrication technique for Si single-electron transistor operating at room temperature , 1995 .

[202]  R. Murray,et al.  Preparation and characterization of laterally heterogeneous polymer modified electrodes using in situ atomic force microscopy , 1992 .

[203]  Wolfgang Porod,et al.  Quantum cellular neural networks , 1996, cond-mat/0005038.

[204]  G M Whitesides,et al.  Fabrication of submicrometer features on curved substrates by microcontact printing. , 1995, Science.

[205]  Hyongsok T. Soh,et al.  Fabrication of 0.1 um metal oxide semiconductor field-effect transistors with the atomic force microscope , 1995 .

[206]  W. Gilbert,et al.  Genetic repressors. , 1970, Scientific American.

[207]  M. Reed,et al.  Resonant transmission in the base/collector junction of a bipolar quantum‐well resonant‐tunneling transistor , 1991 .

[208]  H. Schneider,et al.  Conformational Studies by Low Temperature 13C‐NMR Spectroscopy , 1971 .

[209]  G. Frazier An Ideology For Nanoelectronics , 1988 .

[210]  W. Frensley Gallium arsenide transistors , 1987 .

[211]  Dolan,et al.  Observation of single-electron charging effects in small tunnel junctions. , 1987, Physical review letters.

[212]  Paul vanderWagt,et al.  High Density Memory Based on Quantum Device Technology , 1995 .

[213]  C. Joachim The conductance of a single molecule , 1991 .

[214]  Vwani P. Roychowdhury,et al.  Computational Paradigms in Nanoelectronics: Quantum Coupled Single Electron Logic and Neuromorphic Networks , 1996 .

[215]  M. Devoret,et al.  Single-electron transfer in metallic nanostructures , 1992, Nature.

[216]  J. D. Meindl A prospectus for gigascale integration (GSI) , 1993, [1993 Proceedings] IEEE/SEMI International Semiconductor Manufacturing Science Symposium.

[217]  A. Barclay The Quantum Dot: A Journey into the Future of Microelectronics , 1996 .

[218]  R. Kiehl,et al.  Resonant tunneling transistor with quantum well base and high‐energy injection: A new negative differential resistance device , 1985 .

[219]  Mark R. Pinto,et al.  The future of solid-state electronics , 1997, Bell Labs Technical Journal.

[220]  Ronald P. Andres,et al.  Fabrication of two‐dimensional arrays of nanometer‐size clusters with the atomic force microscope , 1995 .

[221]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[222]  Richard J. Lipton,et al.  On the Computational Power of DNA , 1996, Discret. Appl. Math..

[223]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[224]  R. Feynman Quantum mechanical computers , 1986 .

[225]  J.,et al.  Using DNA to Solve NP-Complete ProblemsRichard , 1995 .

[226]  D. Eigler,et al.  Atomic and Molecular Manipulation with the Scanning Tunneling Microscope , 1991, Science.

[227]  M. Reed,et al.  Non-equilibrium quantum dots: transport , 1990 .

[228]  J. Bryzek,et al.  Micromachines on the march , 1994, IEEE Spectrum.

[229]  Bernard S. Meyerson,et al.  High-speed silicon-germanium electronics , 1994 .

[230]  Michael R. Falvo The nanomanipulator : a teleoperator for manipulating materials at the nanometer scale , 1995 .

[231]  J. Tour,et al.  Approaches to Orthogonally Fused Conducting Polymers For Molecular Electronics , 1990 .