Privacy Aware Offloading of Deep Neural Networks

Deep neural networks require large amounts of resources which makes them hard to use on resource constrained devices such as Internet-of-things devices. Offloading the computations to the cloud can circumvent these constraints but introduces a privacy risk since the operator of the cloud is not necessarily trustworthy. We propose a technique that obfuscates the data before sending it to the remote computation node. The obfuscated data is unintelligible for a human eavesdropper but can still be classified with a high accuracy by a neural network trained on unobfuscated images.