Mechanism of action of tetanus and botulinum neurotoxins

The clostridial neurotoxins responsible for tetanus and botulism are metallo‐proteases that enter nerve cells and block neurotransmitter release via zinc‐dependent cleavage of protein components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular Junction and is internalized and transported retroaxonally to the spinal cord. Whilst TeNT causes spastic paralysis by acting on the spinal inhibitory interneurons, the seven serotypes of botullnum neurotoxins (BoNT) induce a flaccid paralysis because they intoxicate the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G specifically cleave VAMP/synaptobrevin, a membrane protein of small synaptic vesicles, at different single peptide bonds. Proteins of the presynaptic membrane are specifically attacked by the other BoNTs: serotypes A and E cleave SNAP‐25 at two different sites located within the carboxyl terminus, whereas the specific target of serotype C is syntaxin.

[1]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[2]  R. Scheller,et al.  Botulinum Neurotoxin Type C Cleaves a Single Lys-Ala Bond within the Carboxyl-terminal Region of Syntaxins (*) , 1995, The Journal of Biological Chemistry.

[3]  P. Reinemer,et al.  The metzincins — Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a super family of zinc‐peptidases , 1995, Protein science : a publication of the Protein Society.

[4]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[5]  N. Minton Molecular genetics of clostridial neurotoxins. , 1995, Current topics in microbiology and immunology.

[6]  Giampietro Schiavo,et al.  SNARE motif and neurotoxins , 1994, Nature.

[7]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[8]  C. Shone,et al.  Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type B neurotoxin. , 1994, European journal of biochemistry.

[9]  G. Schiavo,et al.  Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. , 1994, The Journal of biological chemistry.

[10]  G. Schiavo,et al.  Bacterial protein toxins penetrate cells via a four‐step mechanism , 1994, FEBS letters.

[11]  T. Südhof,et al.  Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. , 1994, The Journal of biological chemistry.

[12]  L. Simpson,et al.  Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. , 1994, The Journal of pharmacology and experimental therapeutics.

[13]  J. Rothman,et al.  Implications of the SNARE hypothesis for intracellular membrane topology and dynamics , 1994, Current Biology.

[14]  S. Benzer,et al.  Paralysis and early death in cysteine string protein mutants of Drosophila. , 1994, Science.

[15]  D. Jenden,et al.  Cysteine string proteins: a potential link between synaptic vesicles and presynaptic Ca2+ channels. , 1994, Science.

[16]  G. Dayanithi,et al.  Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals , 1994, Neuroscience.

[17]  T. Südhof,et al.  Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. , 1994, The Journal of biological chemistry.

[18]  Mark Hallett,et al.  Therapy with botulinum toxin , 1994 .

[19]  H. Wellhöner Tetanus and botulinum neurotoxins , 1994 .

[20]  R. Scheller,et al.  A molecular description of synaptic vesicle membrane trafficking. , 1994, Annual review of biochemistry.

[21]  M. Gratzl,et al.  Functional characterization of the catalytic site of the tetanus toxin light chain using permeabilized adrenal chromaffin cells , 1993, FEBS letters.

[22]  M. Collins,et al.  Nucleotide sequence of the gene coding for Clostridium botulinum (Clostridium argentinense) type G neurotoxin: genealogical comparison with other clostridial neurotoxins. , 1993, Biochimica et biophysica acta.

[23]  C. Häse,et al.  Bacterial extracellular zinc-containing metalloproteases. , 1993, Microbiological reviews.

[24]  C. Montecucco,et al.  Botulinum A Like Type B and Tetanus Toxins Fulfils Criteria for Being a Zinc‐Dependent Protease , 1993, Journal of neurochemistry.

[25]  R. Jahn,et al.  Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC‐1/syntaxin. , 1993, The EMBO journal.

[26]  F. Benfenati,et al.  Botulinum neurotoxins serotypes A and E cleave SNAP‐25 at distinct COOH‐terminal peptide bonds , 1993, FEBS letters.

[27]  T. Südhof,et al.  Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin , 1993, Nature.

[28]  F. Benfenati,et al.  Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. , 1993, The Journal of biological chemistry.

[29]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[30]  R. Wait,et al.  Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein, isoform-2 by botulinum type B neurotoxin. , 1993, European journal of biochemistry.

[31]  L. Tauc,et al.  A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. , 1993, The Journal of biological chemistry.

[32]  W. Bode,et al.  Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc‐binding environments (HEXXHXXGXXH and Met‐turn) and topologies and should be grouped into a common family, the ‘metzincins’ , 1993, FEBS letters.

[33]  R. Scheller,et al.  The syntaxin family of vesicular transport receptors , 1993, Cell.

[34]  Thomas C. Südhof,et al.  Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25 , 1993, Nature.

[35]  L. Tauc,et al.  Antibodies Against Rat Brain Vesicle‐Associated Membrane Protein (Synaptobrevin) Prevent Inhibition of Acetylcholine Release by Tetanus Toxin or Botulinum Neurotoxin Type B , 1993, Journal of neurochemistry.

[36]  A. Luini,et al.  The transglutaminase hypothesis for the action of tetanus toxin. , 1993, Trends in biochemical sciences.

[37]  G. Schiavo,et al.  Tetanus and botulism neurotoxins: a new group of zinc proteases. , 1993, Trends in biochemical sciences.

[38]  L. Bargelloni,et al.  Neurotransmission and secretion , 1993, Nature.

[39]  F. Benfenati,et al.  Novel targets and catalytic activities of bacterial protein toxins. , 1993, Trends in microbiology.

[40]  M. Catsicas,et al.  Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo , 1993, Nature.

[41]  T. Südhof,et al.  Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein , 1993, Nature.

[42]  G. Schiavo,et al.  Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. , 1993, The Journal of biological chemistry.

[43]  J. Halpern,et al.  Characterization of the receptor-binding domain of tetanus toxin. , 1993, The Journal of biological chemistry.

[44]  J. Berman,et al.  Botulinum toxin inhibits arachidonic acid release associated with acetylcholine release from PC12 cells. , 1993, The Journal of biological chemistry.

[45]  M. Collins,et al.  Nucleotide sequence of the gene coding for Clostridium barati type F neurotoxin: comparison with other clostridial neurotoxins. , 1993, FEMS microbiology letters.

[46]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[47]  A. Luini,et al.  Covalent modification of synapsin I by a tetanus toxin-activated transglutaminase. , 1993, The Journal of biological chemistry.

[48]  M. Murgia,et al.  Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. , 1993, The Journal of biological chemistry.

[49]  P. Lawson,et al.  Sequence of the gene coding for the neurotoxin of Clostridium botulinum type A associated with infant botulism: comparison with other clostridial neurotoxins. , 1993, Research in microbiology.

[50]  J. H. Chou,et al.  Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin proteolysis. , 1992, Biochemical and biophysical research communications.

[51]  G. Schiavo,et al.  Botulinum neurotoxins are zinc proteins. , 1992, The Journal of biological chemistry.

[52]  F. Benfenati,et al.  Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin , 1992, Nature.

[53]  F. Benfenati,et al.  Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. , 1992, EMBO Journal.

[54]  T. A. Roberts,et al.  Sequence of the gene encoding type F neurotoxin of Clostridium botulinum. , 1992, FEMS microbiology letters.

[55]  G. Schiavo,et al.  Ion channel and membrane translocation of diphtheria toxin. , 1992, FEMS microbiology immunology.

[56]  Kristian Prydz,et al.  Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum , 1992, Nature.

[57]  T. Atkinson,et al.  Molecular cloning of the Clostridium botulinum structural gene encoding the type B neurotoxin and determination of its entire nucleotide sequence , 1992, Applied and environmental microbiology.

[58]  L. Tauc,et al.  Minimal essential domains specifying toxicity of the light chains of tetanus toxin and botulinum neurotoxin type A. , 1992, The Journal of biological chemistry.

[59]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[60]  S. Sisodia Beta-amyloid precursor protein cleavage by a membrane-bound protease. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[61]  K. Akagawa,et al.  Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. , 1992, The Journal of biological chemistry.

[62]  Katherine A. Kantardjieff,et al.  The crystal structure of diphtheria toxin , 1992, Nature.

[63]  J. F. Wright,et al.  Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin. , 1992, The Journal of biological chemistry.

[64]  P. De Camilli,et al.  Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons , 1992, The Journal of cell biology.

[65]  H. Niemann,et al.  Sequences of the botulinal neurotoxin E derived from Clostridium botulinum type E (strain Beluga) and Clostridium butyricum (strains ATCC 43181 and ATCC 43755). , 1992, Biochemical and biophysical research communications.

[66]  T. Atkinson,et al.  The complete amino acid sequence of the Clostridium botulinum type-E neurotoxin, derived by nucleotide-sequence analysis of the encoding gene. , 1990, European journal of biochemistry.

[67]  B. Poulain,et al.  Botulinal Neurotoxins: Mode of Action on Neurotransmitter Release , 1992 .

[68]  G. Ferrari,et al.  Tetanus toxin receptor Specific cross‐linking of tetanus toxin to a protein of NGF‐differentiated PC 12 cells , 1991, FEBS letters.

[69]  G. Schiavo,et al.  On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers. , 1991, European journal of biochemistry.

[70]  G. Blobel,et al.  A protein-conducting channel in the endoplasmic reticulum , 1991, Cell.

[71]  J. Alouf,et al.  Sourcebook of bacterial protein toxins , 1991 .

[72]  G. Schiavo,et al.  An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin , 1990, Infection and immunity.

[73]  I. Pastan,et al.  Processing of Pseudomonas exotoxin by a cellular protease results in the generation of a 37,000-Da toxin fragment that is translocated to the cytosol. , 1990, The Journal of biological chemistry.

[74]  H. Kurazono,et al.  Nucleotide sequence of the gene encoding Clostridium botulinum neurotoxin type D. , 1990, Nucleic acids research.

[75]  H. Kurazono,et al.  Nucleotide sequence of Clostridium botulinum C1 neurotoxin. , 1990, Nucleic acids research.

[76]  B. Vallee,et al.  Zinc coordination, function, and structure of zinc enzymes and other proteins. , 1990, Biochemistry.

[77]  H. Kurazono,et al.  The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins. , 1990, The Journal of biological chemistry.

[78]  F E Bloom,et al.  The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations , 1989, The Journal of cell biology.

[79]  L. Tauc,et al.  Light chain of tetanus toxin intracellularly inhibits acetylcholine release at neuro‐neuronal synapses, and its internalization is mediated by heavy chain , 1989, FEBS letters.

[80]  R. Holz,et al.  Isolated light chains of botulinum neurotoxins inhibit exocytosis. Studies in digitonin-permeabilized chromaffin cells. , 1989, The Journal of biological chemistry.

[81]  G. Schiavo,et al.  Effect of pH on the interaction of botulinum neurotoxins A, B and E with liposomes. , 1989, The Biochemical journal.

[82]  G. Menestrina,et al.  Interaction of tetanus toxin with lipid vesicles. Effects of pH, surface charge, and transmembrane potential on the kinetics of channel formation. , 1989, Biophysical journal.

[83]  G. Ahnert-Hilger,et al.  The tetanus toxin light chain inhibits exocytosis , 1989, FEBS letters.

[84]  N. Sugimoto,et al.  Blocking effects of tetanus toxin and its fragment [A-B] on the excitatory and inhibitory synapses of the spinal motoneurone of the cat. , 1989, Toxicon : official journal of the International Society on Toxinology.

[85]  L. Simpson Botulinum neurotoxin and tetanus toxin , 1989 .

[86]  F. Gambale,et al.  Characterization of the channel properties of tetanus toxin in planar lipid bilayers. , 1988, Biophysical journal.

[87]  G. Schiavo,et al.  Interaction of botulinum and tetanus toxins with the lipid bilayer surface. , 1988, The Biochemical journal.

[88]  W. Chiu,et al.  Three-dimensional structural analysis of tetanus toxin by electron crystallography. , 1988, Journal of molecular biology.

[89]  A. Finkelstein,et al.  The N‐terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers , 1987, FEBS letters.

[90]  C. Shone,et al.  A 50-kDa fragment from the NH2-terminus of the heavy subunit of Clostridium botulinum type A neurotoxin forms channels in lipid vesicles. , 1987, European journal of biochemistry.

[91]  A. Henschen,et al.  Tetanus toxin: primary structure, expression in E. coli, and homology with botulinum toxins. , 1986, The EMBO journal.

[92]  N. Fairweather,et al.  The complete nucleotide sequence of tetanus toxin. , 1986, Nucleic acids research.

[93]  C. Montecucco How do tetanus and botulinum toxins bind to neuronal membranes , 1986 .

[94]  J. Black,et al.  Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis , 1986, The Journal of cell biology.

[95]  J. Black,et al.  Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves , 1986, The Journal of cell biology.

[96]  R. Parton,et al.  Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor. , 1986, The Biochemical journal.

[97]  J. J. Donovan,et al.  Ion-conducting channels produced by botulinum toxin in planar lipid membranes. , 1986, Biochemistry.

[98]  D. Mckay,et al.  Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[99]  E. Duflot,et al.  Tetanus toxin is labeled with photoactivatable phospholipids at low pH. , 1986, Biochemistry.

[100]  L. Simpson Molecular pharmacology of botulinum toxin and tetanus toxin. , 1986, Annual review of pharmacology and toxicology.

[101]  E. Yavin,et al.  Tetanus toxin receptors on nerve cells contain a trypsin-sensitive component. , 1986, European journal of biochemistry.

[102]  P. Boquet,et al.  Interaction of tetanus toxin with lipid vesicles at low pH. Protection of specific polypeptides against proteolysis. , 1985, The Journal of biological chemistry.

[103]  B. Ehrlich,et al.  Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[104]  J. Black,et al.  Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization , 1984, Nature.

[105]  E. Duflot,et al.  Tetanus toxin fragment forms channels in lipid vesicles at low pH. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[106]  D. Vidt,et al.  Medical intelligence drug therapy: captopril. , 1982, The New England journal of medicine.

[107]  J. Mellanby,et al.  How does tetanus toxin act? , 1981, Neuroscience.

[108]  K Suda,et al.  Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport , 1979, The Journal of cell biology.

[109]  B P Schoenborn,et al.  Three-dimensional structure of thermolysin. , 1972, Nature: New biology.

[110]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[111]  G. Wright The neurotoxins of Clostridium botulinum and Clostridium tetani. , 1955, Pharmacological reviews.

[112]  A. Burgen,et al.  The action of botulinum toxin on the neuro‐muscular junction , 1949, The Journal of physiology.