A Survey of Algorithms for Separable Convex Optimization with Linear Ascending Constraints

AbstractThe paper considers the minimization of a separable convex function subject to linear ascending constraints. The problem arises as the core optimization in several resource allocation scenarios, and is a special case of an optimization of a separable convex function over the bases of a polymatroid with a certain structure. The paper generalizes a prior algorithm to a wider class of separable convex objective functions that need not be smooth or strictly convex. The paper also summarizes the state-of-the-art algorithms that solve this optimization problem. When the objective function is a so-called $$d{\text {-}}$$d-separable function, a simpler linear time algorithm solves the problem.

[1]  A. Zaporozhets,et al.  A polynomial algorithm for resourse allocation problems with polymatroid constrains 1 , 1996 .

[2]  Luca Sanguinetti,et al.  Power Allocation in Two-Hop Amplify-and-Forward MIMO Relay Systems With QoS Requirements , 2011, IEEE Transactions on Signal Processing.

[3]  Luca Sanguinetti,et al.  Convex Separable Problems With Linear Constraints in Signal Processing and Communications , 2014, IEEE Transactions on Signal Processing.

[4]  Rajesh Sundaresan,et al.  Power minimization for CDMA under colored noise , 2009, IEEE Transactions on Communications.

[5]  Nobuyuki Tsuchimura,et al.  M-Convex Function Minimization by Continuous Relaxation Approach: Proximity Theorem and Algorithm , 2011, SIAM J. Optim..

[6]  D. L. Hanson,et al.  Maximum Likelihood Estimation of the Distributions of Two Stochastically Ordered Random Variables , 1966 .

[7]  Awi Federgruen,et al.  The Greedy Procedure for Resource Allocation Problems: Necessary and Sufficient Conditions for Optimality , 1986, Oper. Res..

[8]  Zizhuo Wang,et al.  On solving convex optimization problems with linear ascending constraints , 2012, Optim. Lett..

[9]  Herbert E. Scarf,et al.  Optimal Policies for a Multi-Echelon Inventory Problem , 1960, Manag. Sci..

[10]  John M. Cioffi,et al.  Optimum linear joint transmit-receive processing for MIMO channels with QoS constraints , 2004, IEEE Transactions on Signal Processing.

[11]  Venkat Anantharam,et al.  Optimal sequences for CDMA under colored noise: A Schur-saddle function property , 2002, IEEE Trans. Inf. Theory.

[12]  Rajesh Sundaresan,et al.  Separable Convex Optimization Problems with Linear Ascending Constraints , 2007, SIAM J. Optim..

[13]  Jr. Arthur F. Veinott Least d-Majorized Network Flows with Inventory and Statistical Applications , 1971 .

[14]  Michael Patriksson,et al.  A survey on the continuous nonlinear resource allocation problem , 2008, Eur. J. Oper. Res..

[15]  Rahul Singh,et al.  A polymatroid approach to separable convex optimization with linear ascending constraints , 2014, 2014 Twentieth National Conference on Communications (NCC).

[16]  Satoko Moriguchi,et al.  On Hochbaum's Proximity-Scaling Algorithm for the General Resource Allocation Problem , 2004, Math. Oper. Res..

[17]  John A. Muckstadt,et al.  Principles of Inventory Management , 2010 .

[18]  Luca Sanguinetti,et al.  Power allocation in two-hop amplify-and-forward MIMO relay systems with QoS requirements , 2011, CAMSAP.

[19]  Rabe von Randow,et al.  A greedy algorithm for solving a class of convex programming problems and its connection with polymatroid theory , 1985, Math. Program..

[20]  Satoru Fujishige,et al.  Lexicographically Optimal Base of a Polymatroid with Respect to a Weight Vector , 1980, Math. Oper. Res..

[21]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for a Special Case of Disjoint Set Union , 1985, J. Comput. Syst. Sci..

[22]  H. Groenevelt Two algorithms for maximizing a separable concave function over a polymatroid feasible region , 1991 .

[23]  Donald B. Johnson,et al.  The Complexity of Selection and Ranking in X+Y and Matrices with Sorted Columns , 1982, J. Comput. Syst. Sci..

[24]  Dorit S. Hochbaum,et al.  Lower and Upper Bounds for the Allocation Problem and Other Nonlinear Optimization Problems , 1994, Math. Oper. Res..

[25]  Patrick Jaillet,et al.  A Decomposition Algorithm for Nested Resource Allocation Problems , 2014, SIAM J. Optim..

[26]  S. Fujishige Submodular function minimization and related topics , 2003, Optim. Methods Softw..