Demonstration of a long pulse X-ray source at the National Ignition Facility

A long duration high fluence x-ray source has been developed at the National Ignition Facility (NIF). The target was a 14.4 mm tall, 4.1 mm diameter, epoxy walled, gas filled pipe. Approximately 1.34 MJ from the NIF laser was used to heat the mixture of (55:45) Kr:Xe at 1.2 atm (∼5.59 mg/cm3) to emit in a fairly isotropic radiant intensity of 400–600 GW/sr from the Ephoton = 3–7 keV spectral range for a duration of ≈ 14 ns. The HYDRA simulated radiant intensities were in reasonable agreement with experiments but deviated at late times.

[1]  Robert L. Kauffman,et al.  Measurement of 0.1-3-keV x rays from laser plasmas , 1986 .

[2]  Daniel M. Fleetwood,et al.  Charge yield for cobalt-60 and 10-keV X-ray irradiations of MOS devices , 1991 .

[3]  D. Ripin,et al.  X‐ray damage to optical components using a laser‐plasma source , 1993 .

[4]  Donald W. Phillion,et al.  Laser ionization and heating of gas targets for long‐scale‐length instability experiments , 1994 .

[5]  Stephen D. Jacobs,et al.  Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system , 1996 .

[6]  H T Powell,et al.  Designing fully continuous phase screens for tailoring focal-plane irradiance profiles. , 1996, Optics letters.

[7]  Perry M. Bell,et al.  X-Ray Backlighting for the National Ignition Facility , 2000 .

[8]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[9]  O. Landen,et al.  Efficient multi-keV underdense laser-produced plasma radiators. , 2001, Physical review letters.

[10]  Christina A. Back,et al.  Multi-keV X-Ray Conversion Efficiency in Laser-Produced Plasmas , 2002 .

[11]  Otto L. Landen,et al.  Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source , 2004 .

[12]  K. Piston,et al.  Implementation of a near backscattering imaging system on the National Ignition Facility , 2004 .

[13]  K. Fournier,et al.  Efficient multi-keV x-ray sources from Ti-doped aerogel targets , 2004, SPIE Optics + Photonics.

[14]  Robert L. Kauffman,et al.  Dante soft x-ray power diagnostic for National Ignition Facility , 2004 .

[15]  John R. Celeste,et al.  Filter-fluorescer diagnostic system for the National Ignition Facility , 2004 .

[16]  B. E. Blue,et al.  Improved pinhole-apertured point-projection backlighter geometry , 2004 .

[17]  R. Kirkwood,et al.  Full-aperture backscatter measurements on the National Ignition Facility , 2004 .

[18]  Bruno Villette,et al.  Multi-keV x-ray conversion efficiencies of laser-preexploded titanium foils , 2005 .

[19]  Neal R. Pederson,et al.  Gated x-ray detector for the National Ignition Facility , 2006 .

[20]  S. Hansen,et al.  Hybrid atomic models for spectroscopic plasma diagnostics , 2006 .

[21]  B. J. MacGowan,et al.  The national ignition facility: path to ignition in the laboratory , 2007 .

[22]  S. Sutton,et al.  National Ignition Facility laser performance status. , 2007, Applied optics.

[23]  O. Landen,et al.  Development of Compton radiography using high‐Z backlighters produced by ultra‐intense lasers , 2007 .

[24]  C. Coverdale,et al.  Large diameter (45-80 mm) nested stainless steel wire arrays at the Z accelerator , 2008 .

[25]  Bruno Villette,et al.  Efficient multi-keV X-ray sources from laser-exploded metallic thin foils , 2008 .

[26]  Erik Brambrink,et al.  High-resolution 17-75 keV backlighters for high energy density experiments , 2008 .

[27]  C. Sorce,et al.  Absolute x-ray yields from laser-irradiated germanium-doped low-density aerogels , 2009 .

[28]  P Bell,et al.  Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility. , 2010, The Review of scientific instruments.

[29]  P. Michel,et al.  Multi-keV X-Ray Source Development Experiments on the National Ignition Facility , 2010 .

[30]  M. J. May,et al.  A test cassette for x-ray-exposure experiments at the National Ignition Facility. , 2010, The Review of scientific instruments.

[31]  B. Remington,et al.  High-energy x-ray backlighter spectrum measurements using calibrated image plates. , 2010, The Review of scientific instruments.

[32]  K. Fournier,et al.  Efficient laser-induced 6-8 keV x-ray production from iron oxide aerogel and foil-lined cavity targets , 2012 .

[33]  K. Fournier,et al.  Integrated x-ray reflectivity measurements of elliptically curved pentaerythritol crystals. , 2012, The Review of scientific instruments.

[34]  K. Fournier,et al.  Demonstration of a 13-keV Kr K-shell x-ray source at the National Ignition Facility. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Michael M. Marinak,et al.  Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser , 2015 .

[36]  K. Fournier,et al.  High-power laser interaction with low-density C–Cu foams , 2015 .

[37]  B. Blue,et al.  Understanding reconstructed Dante spectra using high resolution spectroscopy. , 2016, The Review of scientific instruments.