Bayesian optimization to estimate hyperfine couplings from 19F ENDOR spectra.

[1]  A. Gronenborn,et al.  Gd(III)-19F Distance Measurements of Proteins in Cells by Electron-Nuclear Double Resonance. , 2023, Angewandte Chemie.

[2]  G. Otting,et al.  Short-range ENDOR distance measurements between Gd(III) and trifluoromethyl labels in proteins. , 2022, Physical chemistry chemical physics : PCCP.

[3]  C. Luchinat,et al.  The evolution of paramagnetic NMR as a tool in structural biology. , 2022, Physical chemistry chemical physics : PCCP.

[4]  K. Pan,et al.  19F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase , 2022, Journal of the American Chemical Society.

[5]  A. Shernyukov,et al.  Application of W-band 19F electron nuclear double resonance (ENDOR) spectroscopy to distance measurement using a trityl spin probe and a fluorine label. , 2022, Physical chemistry chemical physics : PCCP.

[6]  D. Häussinger,et al.  Pseudocontact Shifts in Biomolecular NMR Spectroscopy. , 2022, Chemical reviews.

[7]  Lee‐Ping Wang,et al.  Accumulation and Pulse Electron Paramagnetic Resonance Spectroscopic Investigation of the 4-Oxidobenzyl Radical Generated in the Radical S-Adenosyl-l-methionine Enzyme HydG. , 2022, Biochemistry.

[8]  M. Bennati,et al.  Resolution of chemical shift anisotropy in 19F ENDOR spectroscopy at 263 GHz/9.4 T. , 2021, Journal of magnetic resonance.

[9]  A. Bacher,et al.  Selective 13C labelling reveals the electronic structure of flavocoenzyme radicals , 2021, Scientific Reports.

[10]  S. Huckemann,et al.  Distribution of H$$^\upbeta$$ Hyperfine Couplings in a Tyrosyl Radical Revealed by 263 GHz ENDOR Spectroscopy , 2021, Applied Magnetic Resonance.

[11]  S. Huckemann,et al.  Statistical analysis of ENDOR spectra , 2021, Proceedings of the National Academy of Sciences.

[12]  J. Stubbe,et al.  Detection of Water Molecules on the Radical Transfer Pathway of Ribonucleotide Reductase by 17O Electron–Nuclear Double Resonance Spectroscopy , 2021, Journal of the American Chemical Society.

[13]  S. Stoll,et al.  Determining electron-nucleus distances and Fermi contact couplings from ENDOR spectra. , 2021, Physical chemistry chemical physics : PCCP.

[14]  Gershon Wolansky,et al.  Optimal Transport , 2021 .

[15]  M. Bennati,et al.  Measurement of Angstrom to Nanometer Molecular Distances with 19F Nuclear Spins by EPR/ENDOR Spectroscopy , 2019, Angewandte Chemie.

[16]  Antonio Candelieri,et al.  Bayesian Optimization and Data Science , 2019, SpringerBriefs in Optimization.

[17]  D. Case,et al.  High-Resolution ENDOR Spectroscopy Combined with Quantum Chemical Calculations Reveals the Structure of Nitrogenase Janus Intermediate E4(4H). , 2019, Journal of the American Chemical Society.

[18]  M. Bennati,et al.  1H high field electron-nuclear double resonance spectroscopy at 263 GHz/9.4 T. , 2019, Journal of magnetic resonance.

[19]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[20]  G. Jeschke,et al.  Double resonance calibration of g factor standards: Carbon fibers as a high precision standard. , 2018, Journal of magnetic resonance.

[21]  B. Limburg,et al.  On the Influence of the Bridge on Triplet State Delocalization in Linear Porphyrin Oligomers , 2017, Journal of the American Chemical Society.

[22]  M. Bennati EPR Interactions - Hyperfine couplings. , 2017 .

[23]  E. Bordignon EPR Spectroscopy of Nitroxide Spin Probes , 2017 .

[24]  A. Gronenborn,et al.  (19)F Paramagnetic Relaxation Enhancement: A Valuable Tool for Distance Measurements in Proteins. , 2016, Angewandte Chemie.

[25]  S. Maurelli,et al.  Rational Design of Engineered Multifunctional Heterogeneous Catalysts. The Role of Advanced EPR Techniques , 2015, Topics in Catalysis.

[26]  B. Hoffman,et al.  Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). , 2015, Biochimica et biophysica acta.

[27]  F. Neese,et al.  Hydrogen Bond Network between Amino Acid Radical Intermediates on the Proton-Coupled Electron Transfer Pathway of E. coli α2 Ribonucleotide Reductase , 2014, Journal of the American Chemical Society.

[28]  David Groisser,et al.  Scaling-Rotation Distance and Interpolation of Symmetric Positive-Definite Matrices , 2014, SIAM J. Matrix Anal. Appl..

[29]  A. Zouni,et al.  Electronic structure of the tyrosine D radical and the water-splitting complex from pulsed ENDOR spectroscopy on photosystem II single crystals. , 2009, Physical chemistry chemical physics : PCCP.

[30]  Anton Savitsky,et al.  High-Field EPR Spectroscopy on Proteins and their Model Systems: Characterization of Transient Paramagnetic States , 2008 .

[31]  C. Villani Optimal Transport: Old and New , 2008 .

[32]  W. Lubitz,et al.  Spin-density distribution of the carotenoid triplet state in the peridinin-chlorophyll-protein antenna. A Q-band pulse electron-nuclear double resonance and density functional theory study. , 2007, Journal of the American Chemical Society.

[33]  D. Goldfarb High field ENDOR as a characterization tool for functional sites in microporous materials. , 2006, Physical chemistry chemical physics : PCCP.

[34]  R. D. Britt,et al.  55Mn ENDOR of the S2-State Multiline EPR Signal of Photosystem II: Implications on the Structure of the Tetranuclear Mn Cluster , 2000 .

[35]  Deming Wang,et al.  A New Method for Simulating Randomly Oriented Powder Spectra in Magnetic Resonance: TheSydneyOperaHouse(SOPHE) Method , 1995 .

[36]  A. Schweiger,et al.  PULSED ELECTRON-NUCLEAR DOUBLE RESONANCE METHODOLOGY , 1991 .

[37]  M. Brustolon,et al.  Proton hyperfine tensors in nitroxide radicals , 1990 .

[38]  M. Mehring,et al.  19F Chemical shift tensor in fluorobenzene compounds , 1977 .

[39]  E. R. Davies,et al.  A new pulse endor technique , 1974 .

[40]  W. Mims Pulsed endor experiments , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[41]  M. Bennati,et al.  Resolution of chemical shift anisotropy in 19 F ENDOR spectroscopy at 263 GHz/9.4 T Journal of Magnetic Resonance , 2021 .

[42]  Tkach,et al.  Distribution of H ˇ Hyperfine Couplings in a Tyrosyl Radical Revealed by 263 GHz ENDOR Spectroscopy , 2021 .

[43]  S. Van Doorslaer Understanding heme proteins with hyperfine spectroscopy. , 2017, Journal of magnetic resonance.

[44]  Kevin Ford,et al.  From Kolmogorov’s theorem on empirical distribution to number theory , 2007 .

[45]  Gunnar Jeschke,et al.  Principles of pulse electron paramagnetic resonance , 2001 .

[46]  H. Hausner Fundamentals and methods , 1966 .