Interfacial properties of polystyrene in contact with carbon dioxide

Abstract The Cahn–Hilliard theory was combined with equations of state (the original statistical associating fluid theory, the perturbed-chain statistical associating fluid theory or the Sanchez–Lacombe lattice theory) in order to describe both the solubility of carbon dioxide in polystyrene and the interfacial properties between the liquid mixture and the pure gas phase. The comparison between the predicted interfacial tensions and the experimental data from the literature is discussed.

[1]  H. Ted Davis,et al.  Statistical Mechanics of Phases, Interfaces and Thin Films , 1996 .

[2]  B. Alder,et al.  Studies in Molecular Dynamics. X. Corrections to the Augmented van der Waals Theory for the Square Well Fluid , 1972 .

[3]  Joachim Gross,et al.  Application of perturbation theory to a hard-chain reference fluid: an equation of state for square-well chains , 2000 .

[4]  Joachim Gross,et al.  Modeling of polymer phase equilibria using Perturbed-Chain SAFT , 2002 .

[5]  Walter G Chapman,et al.  Application of Dipolar Chain Theory to the Phase Behavior of Polar Fluids and Mixtures , 2001 .

[6]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[7]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[8]  Isaac C. Sanchez,et al.  An elementary molecular theory of classical fluids. Pure fluids , 1976 .

[9]  H. Baumgartl,et al.  Interfacial properties of high viscous liquids in a supercritical carbon dioxide atmosphere , 2002 .

[10]  R. Simha,et al.  Pressure‐Volume‐Temperature Properties and Transitions of Amorphous Polymers; Polystyrene and Poly (orthomethylstyrene) , 1971 .

[11]  I. Sanchez,et al.  Effect of Surfactants on the Interfacial Tension between Supercritical Carbon Dioxide and Polyethylene Glycol , 1996 .

[12]  Joachim Gross,et al.  Modeling Polymer Systems Using the Perturbed-Chain Statistical Associating Fluid Theory Equation of State , 2002 .

[13]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[14]  M. Wertheim,et al.  Thermodynamic perturbation theory of polymerization , 1987 .

[15]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules: extension to fluid mixtures , 1991 .

[16]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[17]  B. Sauer,et al.  Studies of Polymer, Copolymer, and Associating Liquids by Melt Surface Tension Methods and Cahn-Hilliard Density-Gradient Theory , 1994 .

[18]  N. B. Vargaftik Tables on the thermophysical properties of liquids and gases: In normal and dissociated states , 1975 .

[19]  Stephen S. Chen,et al.  Applications of the Augmented van der Waals Theory of Fluids.: I. Pure Fluids , 1977 .

[20]  Yan-Ping Chen,et al.  Calculation of vapor-liquid equilibria of polymer solutions using the SAFT equation of state , 1994 .

[21]  B. Sauer,et al.  The molecular weight and temperature dependence of polymer surface tension: Comparison of experiment with interface gradient theory , 1992 .

[22]  S. Enders,et al.  Calculation of interfacial properties of demixed fluids using density gradient theory , 1998 .

[23]  S. B. Kiselev,et al.  A crossover equation of state for associating fluids , 2001 .

[24]  J. Winkelmann The liquid-vapour interface of pure fluids and mixtures: application of computer simulation and density functional theory , 2001 .

[25]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[26]  F. P. Stein,et al.  Phase Behavior of Telechelic Polyisobutylene in Subcritical and Supercritical Fluids. 3. Three-Arm-Star PIB (4K) as a Model Trimer for Monohydroxy and Dihydroxy PIB (1K) in Ethane, Propane, Dimethyl Ether, Carbon Dioxide, and Chlorodifluoromethane , 1994 .

[27]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[28]  George Jackson,et al.  Phase equilibria of associating fluids , 2006 .

[29]  George Jackson,et al.  Statistical associating fluid theory for chain molecules with attractive potentials of variable range , 1997 .

[30]  E. Weidner,et al.  Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol (PEG)–propane, PEG–nitrogen and PEG–carbon dioxide , 2000 .

[31]  J. Barker,et al.  Theories of Liquids , 1972 .

[32]  B. B. Sauer,et al.  The surface tension of polymer liquids , 1998 .

[33]  W. Wagner,et al.  A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .

[34]  Isaac C. Sanchez,et al.  Interfacial tension theory of low and high molecular weight liquid mixtures , 1981 .

[35]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[36]  K. E. Starling,et al.  Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres , 1971 .

[37]  N. Chatterjee Equations of State for Fluids and Fluid Mixtures , 1991 .

[38]  H. Masuoka,et al.  Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure , 1996 .

[39]  S. Enders,et al.  Interfacial properties of binary mixtures , 2002 .

[40]  Gabriele Sadowski,et al.  Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules , 2001 .

[41]  Erich A. Müller,et al.  Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches , 2001 .

[42]  M. Z. Yates,et al.  Interfacial Activity of Polymeric Surfactants at the Polystyrene−Carbon Dioxide Interface , 1998 .