Deficiency of the miR-29a/b-1 cluster leads to ataxic features and cerebellar alterations in mice

[1]  Vijay P. Singh,et al.  Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice , 2014, RNA: A publication of the RNA Society.

[2]  J. Prehn,et al.  Increased Expression of MicroRNA-29a in ALS Mice: Functional Analysis of Its Inhibition , 2014, Journal of Molecular Neuroscience.

[3]  Dan Zhao,et al.  Heat shock protein 47 regulated by miR-29a to enhance glioma tumor growth and invasion , 2014, Journal of Neuro-Oncology.

[4]  K. Zen,et al.  MicroRNA-29a modulates axon branching by targeting doublecortin in primary neurons , 2014, Protein & Cell.

[5]  A. Lovett-racke,et al.  Increased micro-RNA 29b in the aged brain correlates with the reduction of insulin-like growth factor-1 and fractalkine ligand , 2013, Neurobiology of Aging.

[6]  R. Giffard,et al.  Astrocyte‐enriched miR‐29a targets PUMA and reduces neuronal vulnerability to forebrain ischemia , 2013, Glia.

[7]  J. Martinez-Climent,et al.  Involvement of miRNAs in the Differentiation of Human Glioblastoma Multiforme Stem-Like Cells , 2013, PloS one.

[8]  J. Clements,et al.  Tristetraprolin expression and microRNA-mediated regulation during simian immunodeficiency virus infection of the central nervous system , 2013, Molecular Brain.

[9]  S. Gnyawali,et al.  Loss of miR-29b following Acute Ischemic Stroke Contributes to Neural Cell Death and Infarct Size , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  G. Soukup,et al.  Identifying MicroRNAs Involved in Degeneration of the Organ of Corti during Age-Related Hearing Loss , 2013, PloS one.

[11]  Egidio D'Angelo,et al.  Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. , 2013, Cell reports.

[12]  R. D'Hooge,et al.  Increased gait variability in mice with small cerebellar cortex lesions and normal rotarod performance , 2013, Behavioural Brain Research.

[13]  Avtar Roopra,et al.  MicroRNA miR-29c Down-Regulation Leading to De-Repression of Its Target DNA Methyltransferase 3a Promotes Ischemic Brain Damage , 2013, PloS one.

[14]  D. Chao,et al.  δ-Opioid Receptor Activation and MicroRNA Expression of the Rat Cortex in Hypoxia , 2012, PloS one.

[15]  S. Booth,et al.  Early Mechanisms of Pathobiology Are Revealed by Transcriptional Temporal Dynamics in Hippocampal CA1 Neurons of Prion Infected Mice , 2012, PLoS pathogens.

[16]  J. Yates,et al.  Identification of Novel Targets for miR-29a Using miRNA Proteomics , 2012, PloS one.

[17]  C. Croce,et al.  miR-29ab1 Deficiency Identifies a Negative Feedback Loop Controlling Th1 Bias That Is Dysregulated in Multiple Sclerosis , 2012, The Journal of Immunology.

[18]  P. Cheney,et al.  Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated Neuronal dysfunction , 2012, Cell Death and Disease.

[19]  Xiao-ming Meng,et al.  miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[20]  B. Pillai,et al.  Regulation of BACE1 by miR-29a/b in a cellular model of Spinocerebellar ataxia 17 , 2012, RNA biology.

[21]  P. Jiang,et al.  Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[22]  Aikaterini S. Papadopoulou,et al.  The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor , 2011, Nature Immunology.

[23]  W. Mitch,et al.  Decreased miR-29 suppresses myogenesis in CKD. , 2011, Journal of the American Society of Nephrology : JASN.

[24]  H. Okano,et al.  Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice , 2011, Proceedings of the National Academy of Sciences.

[25]  Michele Zoli,et al.  Targeting of the Arpc3 actin nucleation factor by miR-29a/b regulates dendritic spine morphology , 2011, The Journal of cell biology.

[26]  Xiongfei Xu,et al.  The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ , 2011, Nature Immunology.

[27]  C. D. De Zeeuw,et al.  Purkinje Cell-Specific Ablation of CaV2.1 Channels is Sufficient to Cause Cerebellar Ataxia in Mice , 2011, The Cerebellum.

[28]  A. Harel-Bellan,et al.  Expression and cellular localization of microRNA-29b and RAX, an activator of the RNA-dependent protein kinase (PKR), in the retina of streptozotocin-induced diabetic rats , 2011, Molecular vision.

[29]  Dana Ridzon,et al.  The microRNA body map: dissecting microRNA function through integrative genomics , 2011, Nucleic acids research.

[30]  R. Hawkes,et al.  Patterned Purkinje cell loss in the ataxic sticky mouse , 2011, The European journal of neuroscience.

[31]  I. Varela,et al.  Aging and chronic DNA damage response activate a regulatory pathway involving miR‐29 and p53 , 2011, The EMBO journal.

[32]  S. Pulst,et al.  Frequency of KCNC3 DNA Variants as Causes of Spinocerebellar Ataxia 13 (SCA13) , 2011, PloS one.

[33]  J. Long,et al.  MicroRNA-29c Is a Signature MicroRNA under High Glucose Conditions That Targets Sprouty Homolog 1, and Its in Vivo Knockdown Prevents Progression of Diabetic Nephropathy* , 2011, The Journal of Biological Chemistry.

[34]  Thomas Manke,et al.  MicroRNAs Differentially Expressed in Postnatal Aortic Development Downregulate Elastin via 3′ UTR and Coding-Sequence Binding Sites , 2011, PloS one.

[35]  S. Hammond,et al.  miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. , 2011, Genes & development.

[36]  E. Lundberg,et al.  Towards a knowledge-based Human Protein Atlas , 2010, Nature Biotechnology.

[37]  Huda Y. Zoghbi,et al.  SCA1-like Disease in Mice Expressing Wild-Type Ataxin-1 with a Serine to Aspartic Acid Replacement at Residue 776 , 2010, Neuron.

[38]  Sheila V. Kusnoor,et al.  Extracerebellar role for Cerebellin1: Modulation of dendritic spine density and synapses in striatal medium spiny neurons , 2010, The Journal of comparative neurology.

[39]  G. Gronowicz,et al.  miR-29 Modulates Wnt Signaling in Human Osteoblasts through a Positive Feedback Loop* , 2010, The Journal of Biological Chemistry.

[40]  J. Satoh,et al.  Aberrant microRNA expression in the brains of neurodegenerative diseases: miR‐29a decreased in Alzheimer disease brains targets neurone navigator 3 , 2010, Neuropathology and applied neurobiology.

[41]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[42]  Robert V Farese,et al.  MicroRNA-29b Regulates the Expression Level of Human Progranulin, a Secreted Glycoprotein Implicated in Frontotemporal Dementia , 2010, PloS one.

[43]  Michael W Pfaffl,et al.  The ongoing evolution of qPCR. , 2010, Methods.

[44]  M. Dutia,et al.  Loss of β-III Spectrin Leads to Purkinje Cell Dysfunction Recapitulating the Behavior and Neuropathology of Spinocerebellar Ataxia Type 5 in Humans , 2010, The Journal of Neuroscience.

[45]  Michael T. McManus,et al.  Dicer1 and miR-219 Are Required for Normal Oligodendrocyte Differentiation and Myelination , 2010, Neuron.

[46]  J. C. Baayen,et al.  Expression pattern of miR‐146a, an inflammation‐associated microRNA, in experimental and human temporal lobe epilepsy , 2010, The European journal of neuroscience.

[47]  S. Pulst,et al.  KCNC3: phenotype, mutations, channel biophysics—a study of 260 familial ataxia patients , 2010, Human mutation.

[48]  R. Joho,et al.  Rescue of Motor Coordination by Purkinje Cell-Targeted Restoration of Kv3.3 Channels in Kcnc3-Null Mice Requires Kcnc1 , 2009, The Journal of Neuroscience.

[49]  N. Haider,et al.  Patterned Neuroprotection in the Inpp4awbl Mutant Mouse Cerebellum Correlates with the Expression of Eaat4 , 2009, PloS one.

[50]  E. Radaelli,et al.  Immunohistopathological and neuroimaging characterization of murine orthotopic xenograft models of glioblastoma multiforme recapitulating the most salient features of human disease. , 2009, Histology and histopathology.

[51]  C. Bloomfield,et al.  MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. , 2009, Blood.

[52]  Eugene Berezikov,et al.  Potential role of miR-29b in modulation of Dnmt3a and Dnmt3b expression in primordial germ cells of female mouse embryos. , 2009, RNA.

[53]  E. Fisher,et al.  A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice , 2009, Proceedings of the National Academy of Sciences.

[54]  Harry T Orr,et al.  Pathogenic Mechanisms of a Polyglutamine-mediated Neurodegenerative Disease, Spinocerebellar Ataxia Type 1* , 2009, Journal of Biological Chemistry.

[55]  R. Joho,et al.  The Role of Kv3-type Potassium Channels in Cerebellar Physiology and Behavior , 2009, The Cerebellum.

[56]  Yi Xing,et al.  The Bifunctional microRNA miR-9/miR-9* Regulates REST and CoREST and Is Downregulated in Huntington's Disease , 2008, The Journal of Neuroscience.

[57]  F. Pontén,et al.  The Human Protein Atlas—a tool for pathology , 2008, The Journal of pathology.

[58]  R. Krüger LRRK2 in Parkinson's disease – drawing the curtain of penetrance: a commentary , 2008, BMC medicine.

[59]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[60]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[61]  Jeffrey E. Thatcher,et al.  Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis , 2008, Proceedings of the National Academy of Sciences.

[62]  G. Marks,et al.  Ablation of Kv3.1 and Kv3.3 Potassium Channels Disrupts Thalamocortical Oscillations In Vitro and In Vivo , 2008, The Journal of Neuroscience.

[63]  R. Joho,et al.  Purkinje-Cell-Restricted Restoration of Kv3.3 Function Restores Complex Spikes and Rescues Motor Coordination in Kcnc3 Mutants , 2008, The Journal of Neuroscience.

[64]  A. Delacourte,et al.  Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression , 2008, Proceedings of the National Academy of Sciences.

[65]  Elena Cattaneo,et al.  A microRNA-based gene dysregulation pathway in Huntington's disease , 2008, Neurobiology of Disease.

[66]  A. Silahtaroglu,et al.  MicroRNA expression in the adult mouse central nervous system. , 2008, RNA.

[67]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[68]  C. Morrison,et al.  MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B , 2007, Proceedings of the National Academy of Sciences.

[69]  Eugene Berezikov,et al.  Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification , 2007, Nature Protocols.

[70]  Yan Feng,et al.  Critical regulation of CD4+ T cell survival and autoimmunity by β-arrestin 1 , 2007, Nature Immunology.

[71]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[72]  T. Fukushima,et al.  Expression profile analysis of microRNA (miRNA) in mouse central nervous system using a new miRNA detection system that examines hybridization signals at every step of washing. , 2007, Gene.

[73]  J. Roder,et al.  NMDA Receptor Function and NMDA Receptor-Dependent Phosphorylation of Huntingtin Is Altered by the Endocytic Protein HIP1 , 2007, The Journal of Neuroscience.

[74]  R. Lefkowitz,et al.  β-Arrestins and Cell Signaling , 2007 .

[75]  E. Wentzel,et al.  A Hexanucleotide Element Directs MicroRNA Nuclear Import , 2007, Science.

[76]  Reinhard Jahn,et al.  Synaptic and vesicular co‐localization of the glutamate transporters VGLUT1 and VGLUT2 in the mouse hippocampus , 2006, Journal of neurochemistry.

[77]  T. Knöpfel,et al.  Behavioral motor dysfunction in Kv3‐type potassium channel‐deficient mice , 2006, Genes, brain, and behavior.

[78]  R. D'Hooge,et al.  Concomitant Deficits in Working Memory and Fear Extinction Are Functionally Dissociated from Reduced Anxiety in Metabotropic Glutamate Receptor 7-Deficient Mice , 2006, The Journal of Neuroscience.

[79]  Dagmar Nolte,et al.  Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes , 2006, Nature Genetics.

[80]  Kamran Khodakhah,et al.  Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia , 2006, Nature Neuroscience.

[81]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[82]  Lena Smirnova,et al.  Regulation of miRNA expression during neural cell specification , 2005, The European journal of neuroscience.

[83]  Aaron DiAntonio,et al.  Increased Expression of the Drosophila Vesicular Glutamate Transporter Leads to Excess Glutamate Release and a Compensatory Decrease in Quantal Content , 2004, The Journal of Neuroscience.

[84]  J F Storm,et al.  Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Benjamin D. Sachs,et al.  RORα Coordinates Reciprocal Signaling in Cerebellar Development through Sonic hedgehog and Calcium-Dependent Pathways , 2003, Neuron.

[86]  L. Raymond,et al.  Disruption of the endocytic protein HIP1 results in neurological deficits and decreased AMPA receptor trafficking , 2003, The EMBO journal.

[87]  Im Joo Rhyu,et al.  Bidirectional Alterations in Cerebellar Synaptic Transmission oftottering and rollingCa2+ Channel Mutant Mice , 2002, The Journal of Neuroscience.

[88]  David Thissen,et al.  Quick and Easy Implementation of the Benjamini-Hochberg Procedure for Controlling the False Positive Rate in Multiple Comparisons , 2002 .

[89]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[90]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[91]  Stephen B. Dunnett,et al.  Characterization of Progressive Motor Deficits in Mice Transgenic for the Human Huntington’s Disease Mutation , 1999, The Journal of Neuroscience.

[92]  J. Oberdick,et al.  Ectopic Overexpression of Engrailed-2 in Cerebellar Purkinje Cells Causes Restricted Cell Loss and Retarded External Germinal Layer Development at Lobule Junctions , 1998, The Journal of Neuroscience.

[93]  M. MacDonald,et al.  Reduced penetrance of the Huntington's disease mutation. , 1997, Human molecular genetics.

[94]  L. Shaffer,et al.  Duplication of the PMP22 gene in 17p partial trisomy patients with Charcot-Marie-Tooth type-1A neuropathy , 1996, Human Genetics.

[95]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[96]  K. Sawada,et al.  Striking pattern of Purkinje cell loss in cerebellum of an ataxic mutant mouse, tottering. , 2009, Acta neurobiologiae experimentalis.

[97]  Tsung-Cheng Chang,et al.  Widespread microRNA repression by Myc contributes to tumorigenesis , 2008, Nature Genetics.

[98]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[99]  Nucleic Acids Research Advance Access published June 18, 2007 , 2007 .

[100]  D. Campion,et al.  APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy , 2006, Nature Genetics.

[101]  J. Vincent,et al.  Spinocerebellar ataxia type 8: molecular genetic comparisons and haplotype analysis of 37 families with ataxia. , 2004, American journal of human genetics.

[102]  Amy J Bastian,et al.  Role of the cerebellum in the control and adaptation of gait in health and disease. , 2004, Progress in brain research.

[103]  J. Lupski,et al.  Absence of PMP22 coding region mutations in CMT1A duplication patients: Further evidence supporting gene dosage as a mechanism for charcot‐marie‐tooth disease type 1A , 1996, Human mutation.

[104]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[105]  M. Ito Experimental verification of Marr-Albus' plasticity assumption for the cerebellum. , 1982, Acta biologica Academiae Scientiarum Hungaricae.