Machine learning predictions on fracture toughness of multiscale bio-nano-composites

Tailorability is an important advantage of composites. Incorporating new bio-reinforcements into composites can contribute to using agricultural wastes and creating tougher and more reliable materials. Nevertheless, the huge number of possible natural material combinations works against finding optimal composite designs. Here, machine learning was employed to effectively predict fracture toughness properties of multiscale bio-nano-composites. Charpy impact tests were conducted on composites with various combinations of two new bio fillers, pistachio shell powders, and fractal date seed particles, as well as nano-clays and short latania fibers, all which reinforce a poly(propylene)/ethylene–propylene–diene-monomer matrix. The measured energy absorptions obtained were used to calculate strain energy release rates as a fracture toughness parameter using linear elastic fracture mechanics and finite element analysis approaches. Despite the limited number of training data obtained from these impact tests and finite element analysis, the machine learning results were accurate for prediction and optimal design. This study applied the decision tree regressor and adaptive boosting regressor machine learning methods in contrast to the K-nearest neighbor regressor machine learning approach used in our previous study for heat deflection temperature predictions. Scanning electron microscopy, optical microscopy, and transmission electron microscopy were used to study the nano-clay dispersion and impact fracture morphology.

[1]  E. M. Elliot Plastics in engineering , 1945 .

[2]  J. Kocsis,et al.  Morphological study on the effect of elastomeric impact modifiers in polypropylene systems , 1979 .

[3]  J. Karger‐Kocsis,et al.  Dynamic mechanical and impact properties of polypropylene/EPDM blends , 1982 .

[4]  D. Uhlmann,et al.  Ductile–brittle transition in polymers , 1984 .

[5]  D. Uhlmann,et al.  Crystalline morphology of polypropylene and rubber-modified polypropylene , 1984 .

[6]  K. Dao Rubber phase dispersion in polypropylene , 1984 .

[7]  R. Crawford CHAPTER 2 – Mechanical Behaviour of Plastics , 1998 .

[8]  Robert E. Cohen,et al.  Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles , 1999 .

[9]  Richard W. Siegel,et al.  Synthesis and mechanical properties of TiO2-epoxy nanocomposites , 1999 .

[10]  P. Wambua,et al.  Natural fibres: can they replace glass in fibre reinforced plastics? , 2001 .

[11]  V. Divjaković,et al.  Effect of Nano-and Micro-Silica Fillers on Polyurethane Foam Properties , 2002 .

[12]  C. Choy,et al.  Effects of coupling agent and morphology on the impact strength of high density polyethylene/CaCO3 composites , 2002 .

[13]  Ming Qiu Zhang,et al.  Epoxy nanocomposites with high mechanical and tribological performance , 2003 .

[14]  M. Misra,et al.  Effect of Clay and Alumina-Nanowhisker Reinforcements on the Mechanical Properties of Nanocomposites from Biobased Epoxy: A Comparative Study , 2004 .

[15]  L. Drzal,et al.  The effect of chemical modification on the fracture toughness of montmorillonite clay/epoxy nanocomposites , 2004 .

[16]  N. Gupta,et al.  Enhancement of Energy Absorption in Syntactic Foams by Nanoclay Incorporation for Sandwich Core Applications , 2005 .

[17]  Klaus Friedrich,et al.  Epoxy nanocomposites ¿ fracture and toughening mechanisms , 2006 .

[18]  Eamonn J. Keogh,et al.  Ensembles of Nearest Neighbor Forecasts , 2006, ECML.

[19]  M. S. Joshi,et al.  Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles , 2006 .

[20]  J. Viana Polymeric materials for impact and energy dissipation , 2006 .

[21]  L. Ye,et al.  A toughened epoxy resin by silica nanoparticle reinforcement , 2006 .

[22]  H. M. D. Costa,et al.  Analysis of thermal properties and impact strength of PP/SRT, PP/EPDM and PP/SRT/EPDM mixtures in single screw extruder , 2006 .

[23]  Kevin Robbie,et al.  Nanomaterials and nanoparticles: Sources and toxicity , 2007, Biointerphases.

[24]  M. Tian,et al.  Structure and Mechanical Properties of PP/EPDM/Attapulgite Ternary Blends , 2007 .

[25]  R. Anandjiwala,et al.  Composites from Bast Fibres-Prospects and Potential in the Changing Market Environment , 2007 .

[26]  Arun K. Subramaniyan,et al.  Toughening polymeric composites using nanoclay: Crack tip scale effects on fracture toughness , 2007 .

[27]  Arun K. Subramaniyan,et al.  Interlaminar Fracture Behavior of Nanoclay Reinforced Glass Fiber Composites , 2008 .

[28]  G. Ziegmann,et al.  Processing and modeling of the mechanical behavior of natural fiber thermoplastic composite: Flax/polypropylene , 2009 .

[29]  S. Mahapatra,et al.  A Comparative Study on Different Ceramic Fillers Affecting Mechanical Properties of Glass—Polyester Composites , 2009 .

[30]  K. Iqbal,et al.  Quasi-static and impact fracture behaviors of CFRPs with nanoclay-filled epoxy matrix , 2011 .

[31]  G. Cicala,et al.  Properties and performances of various hybrid glass/natural fibre composites for curved pipes , 2009 .

[32]  H. M. D. Costa,et al.  Analysis and optimization of polypropylene (PP)/ethylene–propylene–diene monomer (EPDM)/scrap rubber tire (SRT) mixtures using RSM methodology , 2010 .

[33]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[34]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[35]  H. Anuar,et al.  Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fibre , 2011 .

[36]  R. Farsani,et al.  Creep Behavior of Basalt and Glass Fiber Reinforced Epoxy Composites , 2011 .

[37]  Tadayoshi Fushiki,et al.  Estimation of prediction error by using K-fold cross-validation , 2011, Stat. Comput..

[38]  H. Anuar,et al.  Compatibilized PP/EPDM-Kenaf Fibre Composite Using Melt Blending Method , 2011 .

[39]  S. Khalili,et al.  Mechanical behavior of basalt fiber-reinforced and basalt fiber metal laminate composites under tensile and bending loads , 2011 .

[40]  E. Frollini,et al.  Materials prepared from biopolyethylene and curaua fibers: Composites from biomass , 2012 .

[41]  John G. Lyons,et al.  Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites , 2013 .

[42]  R. Farsani,et al.  Aging Influence on Charpy Impact Behavior of Basalt Fiber Reinforced Epoxy Composites , 2013 .

[43]  Gerhard Ziegmann,et al.  Characterisation of flax polypropylene composites using ultrasonic longitudinal sound wave technique , 2013 .

[44]  Robert E. Schapire,et al.  Explaining AdaBoost , 2013, Empirical Inference.

[45]  K. Pickering,et al.  Analysis of mechanical properties of hemp fibre reinforced unsaturated polyester composites , 2013 .

[46]  S. Khalili,et al.  Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene–clay nanocomposites , 2014 .

[47]  T. Amornsakchai,et al.  Mechanical properties of highly aligned short pineapple leaf fiber reinforced – Nitrile rubber composite: Effect of fiber content and Bonding Agent , 2014 .

[48]  S. Sinha,et al.  Carbon Black-Filled PE/PP/EPDM Blends: Phase Selective Localization of Carbon Black and EPDM-Induced Phase Stabilization , 2014 .

[49]  Claudia Merlini,et al.  Polyaniline-coated coconut fibers: Structure, properties and their use as conductive additives in matrix of polyurethane derived from castor oil , 2014 .

[50]  R. Eslami Farsani,et al.  Charpy impact response of basalt fiber reinforced epoxy and basalt fiber metal laminate composites: Experimental study , 2014 .

[51]  C. Santulli,et al.  Influence of temperature and impact velocity on the impact response of jute/UP composites , 2014 .

[52]  Naheed Saba,et al.  Mechanical properties of kenaf fibre reinforced polymer composite: A review , 2015 .

[53]  D. V. Moraes,et al.  Influence of loading frequency on the fatigue behaviour of coir fibre reinforced PP composite , 2015 .

[54]  S. Behnia,et al.  Influence of Stacking Sequence and Notch Angle on the Charpy Impact Behavior of Hybrid Composites , 2016, Mechanics of Composite Materials.

[55]  K. Nikbin,et al.  Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes , 2016 .

[56]  K. Nikbin,et al.  Mechanical characterization of novel latania natural fiber reinforced PP/EPDM composites , 2016 .

[57]  R. Farsani,et al.  Creep behavior of basalt fiber-metal laminate composites , 2016 .

[58]  K. Ashik,et al.  Effect of Filler on Mechanical Properties of Natural Fiber Reinforced Composites , 2017 .

[59]  M. Uthayakumar,et al.  Influence of filler on erosion behavior of polymer composites: A comprehensive review , 2018 .

[60]  V. Daghigh,et al.  Free vibration of size and temperature‐dependent carbon nanotube (CNT)‐reinforced composite nanoplates with CNT agglomeration , 2018, Polymer Composites.

[61]  C. Pittman,et al.  Influence of maleated polypropylene coupling agent on mechanical and thermal behavior of latania fiber‐reinforced PP/EPDM composites , 2018 .

[62]  M. Aghalovyan,et al.  Asymptotic Solution of the First 3D Dynamic Elasticity Theory Problem on Forced Vibrations of a Three-Layer Plate with an Asymmetric Structure , 2019, Mechanics of Composite Materials.

[63]  Mark F. Horstemeyer,et al.  Heat deflection temperatures of bio-nano-composites using experiments and machine learning predictions , 2020 .

[64]  V. Daghigh,et al.  The Buckling Behavior of Vacuum-Infused Open-Hole Unidirectional Basalt-Fiber Composites Experimental and Numerical Investigations , 2020, Mechanics of Composite Materials.

[65]  J. Reddy,et al.  Nonlocal bending and buckling of agglomerated CNT-Reinforced composite nanoplates , 2020 .