Antibandwidth and cyclic antibandwidth of Hamming graphs

The antibandwidth problem is to label vertices of a graph G(V,E) bijectively by integers 0,1,...,|V|-1 in such a way that the minimal difference of labels of adjacent vertices is maximized. In this paper we study the antibandwidth of Hamming graphs. We provide labeling algorithms and tight upper bounds for general Hamming graphs @P"k"="1^dK"n"""k. We have exact values for special choices of n"i^'s and equality between antibandwidth and cyclic antibandwidth values. Moreover, in the case where the two largest sizes of n"i^'s are different we show that the Hamming graph is multiplicative in the sense of [9]. As a consequence, we obtain exact values for the antibandwidth of p isolated copies of this type of Hamming graphs.

[1]  Imrich Vrto,et al.  Antibandwidth of Three-Dimensional Meshes , 2007, Electron. Notes Discret. Math..

[2]  F. Gobel The separation number , 1994 .

[3]  Oliver Vornberger,et al.  On Some Variants of the Bandwidth Minimization Problem , 1984, SIAM J. Comput..

[4]  Yifan Hu,et al.  On Maximum Differential Graph Coloring , 2010, Graph Drawing.

[5]  JOSEP DÍAZ,et al.  A survey of graph layout problems , 2002, CSUR.

[6]  L. H. Harper On the bandwidth of a Hamming graph , 2003, Theor. Comput. Sci..

[7]  Richa Bansal,et al.  A memetic algorithm for the cyclic antibandwidth maximization problem , 2011, Soft Comput..

[8]  Paola Cappanera A Survey on Obnoxious Facility Location Problems , 1999 .

[9]  Garth Isaak Powers of Hamiltonian paths in interval graphs , 1998, J. Graph Theory.

[10]  L. H. Harper On an Isoperimetric Problem for Hamming Graphs , 1999, Discret. Appl. Math..

[11]  Zevi Miller,et al.  Separation numbers of trees , 2009, Theor. Comput. Sci..

[12]  André Raspaud,et al.  Antibandwidth and cyclic antibandwidth of meshes and hypercubes , 2009, Discret. Math..

[13]  Sorina Dumitrescu,et al.  On explicit formulas for bandwidth and antibandwidth of hypercubes , 2009, Discret. Appl. Math..

[14]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[15]  Annalisa Massini,et al.  Antibandwidth of Complete k-Ary Trees , 2006, Electron. Notes Discret. Math..

[16]  Annalisa Massini,et al.  Antibandwidth of complete k-ary trees , 2009, Discret. Math..

[17]  L. H. Harper,et al.  On the bandwidth of 3-dimensional Hamming graphs , 2008, Theor. Comput. Sci..

[18]  Dan Pritikin,et al.  On the separation number of a graph , 1989, Networks.

[19]  Garth Isaak,et al.  Hamiltonian powers in threshold and arborescent comparability graphs , 1999, Discret. Math..

[20]  Imrich Vrto,et al.  Antibandwidth of d-Dimensional Meshes , 2009, IWOCA.

[21]  Richa Bansal,et al.  Memetic algorithm for the antibandwidth maximization problem , 2011, J. Heuristics.

[22]  ScienceDirect Electronic notes in discrete mathematics , 1999 .