Fano resonance control in a photonic crystal structure and its application to ultrafast switching

We experimentally demonstrate a photonic crystal structure that allows easy and robust control of the Fano spectrum. Its operation relies on controlling the amplitude of light propagating along one of the light paths in the structure from which the Fano resonance is obtained. Short-pulse dynamic measurements show that besides drastically increasing the switching contrast, the transmission dynamics itself is strongly affected by the nature of the resonance. The influence of slow-recovery tails implied by a long carrier lifetime can thus be reduced using a Fano resonance due to a hitherto unrecognized reshaping effect of the nonlinear Fano transfer function. As an example, we present a system application of a Fano structure, demonstrating its advantages by the experimental realization of 10 Gbit/s all-optical modulation with optical control power less than 1 mW.

[1]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[2]  Robert Magnusson,et al.  Fano resonance formula for lossy two-port systems. , 2013, Optics express.

[3]  Rémy Braive,et al.  Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells , 2014 .

[4]  Zongfu Yu,et al.  Fundamental bounds on decay rates in asymmetric single-mode optical resonators. , 2013, Optics letters.

[5]  P. J. Winzer,et al.  Sensitivity enhancement of optical receivers by impulsive coding , 1999 .

[6]  Masaya Notomi,et al.  Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. , 2013, Optics express.

[7]  Masaya Notomi,et al.  Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers , 2013, Nature Photonics.

[8]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  J. Bell,et al.  Experiment and Theory , 1968 .

[10]  Dennis W. Prather,et al.  Experimentally demonstrated filters based on guided resonance of photonic-crystal films , 2005 .

[11]  Heinrich Kurz,et al.  25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator. , 2008, Optics express.

[12]  Jesper Mørk,et al.  Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches. , 2011, Optics express.

[13]  Leif Katsuo Oxenløwe,et al.  Switching characteristics of an InP photonic crystal nanocavity: experiment and theory. , 2013, Optics express.

[14]  Andrei Faraon,et al.  Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. , 2011, Physical review letters.

[15]  Carlo Sirtori,et al.  Controlling the sign of quantum interference by tunnelling from quantum wells , 1997, Nature.

[16]  Toshihiko Baba,et al.  10 Gb/s operation of photonic crystal silicon optical modulators. , 2011, Optics express.

[17]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[18]  Thomas F. Krauss,et al.  Light scattering and Fano resonances in high-Q photonic crystal nanocavities , 2009 .

[19]  G. Bellanca,et al.  All-optical signal processing at 10 GHz using a photonic crystal molecule , 2013 .

[20]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[21]  Jesper Mørk,et al.  Improved switching using Fano resonances in photonic crystal structures. , 2013, Optics letters.

[22]  Jing Xu,et al.  Wavelength Conversion of a 9.35-Gb/s RZ OOK Signal in an InP Photonic Crystal Nanocavity , 2014, IEEE Photonics Technology Letters.

[23]  A. de Rossi,et al.  Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities. , 2013, Optics express.

[24]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[25]  Chen Sun,et al.  Addressing link-level design tradeoffs for integrated photonic interconnects , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[26]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[27]  Shanhui Fan,et al.  Sharp asymmetric line shapes in side-coupled waveguide-cavity systems , 2002 .

[28]  T. W. Berg,et al.  Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[29]  Michal Lipson,et al.  Changing the colour of light in a silicon resonator , 2007 .

[30]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[31]  Min Qiu,et al.  Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. , 2004, Optics express.

[32]  F. Koyama,et al.  Frequency chirping in external modulators , 1988 .

[33]  Susumu Noda,et al.  Trapping and emission of photons by a single defect in a photonic bandgap structure , 2000, Nature.

[34]  J. Mørk,et al.  Experimental demonstration of a four-port photonic crystal cross-waveguide structure , 2012 .

[35]  Masaya Notomi,et al.  All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip , 2010, 1002.3207.

[36]  Shanhui Fan,et al.  Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement , 2013 .

[37]  Xiaodong Yang,et al.  Observation of femtojoule optical bistability involving fano resonances in high-Q/Vm silicon photonic crystal nanocavities , 2007 .

[38]  R.M. Osgood,et al.  All-Optical Format Conversion of NRZ-OOK to RZ-OOK in a Silicon Nanowire Utilizing Either XPM or FWM and Resulting in a Receiver Sensitivity Gain of $\sim$2.5 dB , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  J. Mørk,et al.  Tunable true-time delay of a microwave photonic signal realized by cross gain modulation in a semiconductor waveguide , 2011 .

[40]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[41]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[42]  H. Giessen,et al.  Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. , 2003, Physical review letters.