Towards a Navier Stokes-Darcy Upscaling Based on Permeability Tensor Computation

Abstract The micro scale simulation of CO2 sequestration involves complex, porous-like geometries. For the generation of such geometries, we present two approaches: In 2D, we construct a fractured domain by channel networks. In 3D, we approximate sand grain-like scenarios by dense sphere packings. The flow through these structures is simulated with the incompressible Navier-Stokes solver of the PDE framework Peano. Using an upscaling scheme, the results of the micro scale are used as input data for a Darcy solver on the coarse scales. The coupling concept and the scenario generators are presented together with first simulation results showing the validity of the approach.